Parsley is a commonly cultivated Apiaceae species of culinary and medicinal importance. Parsley has several recognized health benefits and the species has been utilized in traditional medicine since ancient times. Although parsley is among the most commonly cultivated members of Apiaceae, no systematic genomic research has been conducted on parsley.
View Article and Find Full Text PDFGarden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research.
View Article and Find Full Text PDFObjective: Coronavirus disease 2019 (COVID-19), leading to mild infection (MI), acute respiratory distress syndrome or death in different persons. Although the basis of these variabilities has not been fully elucidated, some possible findings have been encountered. In the present study, we aimed to reveal genes with different expression profiles by next-generation sequencing of RNA isolated from blood taken from infected patients to reveal molecular causes of different response.
View Article and Find Full Text PDFQuince (Cydonia oblonga Mill.) is the sole member of the genus Cydonia in the Rosacea family and closely related to the major pome fruits, apple (Malus domestica Borkh.) and pear (Pyrus communis L.
View Article and Find Full Text PDFIn the present work, a barcode-DNA analysis method is described for the detection of plant oil adulteration in milk and dairy products. The method relies on the fact that plant DNA should not be present in readily detectable amounts in a dairy product unless it contains undeclared plant material. Thus, a universal plant barcode is chosen as the target to be amplified from dairy samples.
View Article and Find Full Text PDFBackground: Pistachio (Pistacia vera L.) is an expensive culinary nut species; it is therefore susceptible to adulteration for economic profit. Green pea (Pisum sativum L.
View Article and Find Full Text PDFThe aim of this study was to compare the performance of a DNA-barcode assay with fatty acid profile analysis to authenticate the botanical origin of olive oil. To achieve this aim, we performed a PCR-capillary electrophoresis (PCR-CE) approach on olive oil: seed oil blends using the plastid trnL (UAA) intron barcode. In parallel to genomic analysis, we subjected the samples to gas chromatography analysis of fatty acid composition.
View Article and Find Full Text PDFThe aim of this study was to develop a DNA barcode assay to authenticate the botanical origin of herbal teas. To reach this aim, we tested the efficiency of a PCR-capillary electrophoresis (PCR-CE) approach on commercial herbal tea samples using two noncoding plastid barcodes, the trnL intron and the intergenic spacer between trnL and trnF. Barcode DNA length polymorphisms proved successful in authenticating the species origin of herbal teas.
View Article and Find Full Text PDF