Publications by authors named "Ayse N Oktay"

Purpose: The main purpose of this study was to optimize a cyclodextrin-based nanogel of flurbiprofen (FP) for prolonged dermal administration and evaluate its stability, in vitro release, ex vivo skin permeation, and in vivo pharmacokinetic profile.

Methods: The nanogels were prepared via emulsification/solvent evaporation process and optimized through design of experiments. Optimal formulation was characterized via particle size (PS), polydispersity index (PDI), zeta potential (ZP), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD), solubility, stability, in vitro release/ex vivo permeation studies and mathematical modeling, and pharmacokinetic studies conducted in rats.

View Article and Find Full Text PDF

Drug-polymer interactions and miscibility promote the formation and performance of amorphous solid dispersions (ASDs) of poorly soluble drugs for improved oral bioavailability. The objective of this study was to employ drug-polymer interaction calculations and small-scale experimental characterization to screen polymers for potential ASDs of ritonavir. Seven polymers across four polymer types were screened as follows: an enteric one (EudragitS100), amphiphilic ones (HPMCAS-L, HPMCAS-H, and their 1:1 combination), hydrophilic ones (PEG-6000, PVP-VA), and a surfactant (Soluplus), including PVP-VA as a positive control, as the commercial ASD employs PVP-VA.

View Article and Find Full Text PDF

Tenofovir alafenamide (TAF) is a BCS Class III compound and an oral pro-drug of Tenofovir (TFV) with limited oral bioavailability. The bioavailability of the oral intake increases with food as a result of the low stability of the active substance in the stomach. The reference drug is "Vemlidy® 25 mg Film Tablet", which contains 25 mg of TAF in "hemifumarate" form, is under patent protection until 15.

View Article and Find Full Text PDF

We understand that quality control dissolution media may best anticipate in vivo product performance by mimicking in vivo media, but preferably involve at most a single pharmaceutical surfactant for routine laboratory use. The objective here was to estimate the concentrations of six pharmaceutical surfactants to mimic etravirine solubility and intrinsic dissolution rate, as well as dissolution rate from a film model, in each Fed State Simulated Intestinal Fluid Version 2 (FeSSIF-V2) and Fasted State Simulated Intestinal Fluid Version 2 (FaSSIF-V2). Solubility studies and colloid sizing measurements were conducted.

View Article and Find Full Text PDF

Nanosuspensions (NSs), which are nanosized colloidal particle systems, have recently become one of the most interesting substances in nanopharmaceuticals. NSs have high commercial potential because they provide the enhanced solubility and dissolution of low-water-soluble drugs by means of their small particle sizes and large surface areas. In addition, they can alter the pharmacokinetics of the drug and, thus, improve its efficacy and safety.

View Article and Find Full Text PDF

Purpose: The objective of this study was to optimize the Flurbiprofen (FB) nanosuspension (NS) based gel and to investigate the in vitro release, ex vivo permeation, the plasma concentration-time profile and pharmacokinetic parameters.

Methods: FB-NSs were developed using the wet milling process with the Design of Experiment (DoE) approach. The optimum FB-NS was characterized on the basis of SEM, DSC, XRPD, solubility and permeation studies.

View Article and Find Full Text PDF

Aim: The objective of this study was to develop dermal nanosuspension (NS) based gel formulation of etodolac (ETD).

Methods: Etodolac nanosuspension (ETD-NS) was prepared by wet milling method and dispersed in hydroxypropyl methylcellulose (NS-HPMC) or hydroxyethyl cellulose (NS-HEC) gels. Rheologic and mechanical properties were investigated.

View Article and Find Full Text PDF

Flurbiprofen (FB) is an analgesic and anti-inflammatory drug, but its low water solubility (BCS Class II) limits its dermal bioavailability. The aim of this study is to develop a FB nanosuspension (NS) based gel and to evaluate its analgesic and anti-inflammatory activities in rats. FB-NS was produced by the wet milling method with Plantacare 2000, as stabilizer.

View Article and Find Full Text PDF

Flurbiprofen (FB) is an effective nonsteroidal anti-inflammatory and BCS class II drug and its poor solubility plays a critical role in limiting its bioavailability. Nanosuspensions can be defined as nanosized colloidal dispersions of drug particles stabilized with stabilizers. The solubility of poor soluble drugs can be increased thanks to their small size and large surface area.

View Article and Find Full Text PDF

Flurbiprofen (FB) is the one of the non-steroidal anti-inflammatory drugs (NSAIDs) which has low water solubility and dissolution. Nanosuspensions are promising drug delivery systems consisting pure drug particles to overcome poor water solubility issues. Recently, design of experiment (DoE) approaches have often been used to develop new formulations include nanosuspensions.

View Article and Find Full Text PDF

Nowadays pharmaceutical industries and regulatory authorities suggest new approaches such as Quality by Design principles to reduce experiments of formulation studies, improve product quality, save cost and time. SeDeM Expert System is a predictive approach for the preformulation studies and it provides information about suitability of API for direct compression by evaluating 12 parameters. The system also allows selecting appropriate excipients by determining same parameters to improve compressibility of API.

View Article and Find Full Text PDF