For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17).
View Article and Find Full Text PDFHere, we demonstrate that the fractalkine (FKN)/CX3CR1 system represents a regulatory mechanism for pancreatic islet β cell function and insulin secretion. CX3CR1 knockout (KO) mice exhibited a marked defect in glucose and GLP1-stimulated insulin secretion, and this defect was also observed in vitro in isolated islets from CX3CR1 KO mice. In vivo administration of FKN improved glucose tolerance with an increase in insulin secretion.
View Article and Find Full Text PDFThe chemokine receptor CXCR4 and ligand SDF-1α are expressed in fetal and adult mouse islets. Neutralization of CXCR4 has previously been shown to diminish ductal cell proliferation and increase apoptosis in the IFNγ transgenic mouse model in which the adult mouse pancreas displays islet regeneration. Here, we demonstrate that CXCR4 and SDF-1α are expressed in the human fetal pancreas and that during early gestation, CXCR4 colocalizes with neurogenin 3 (ngn3), a key transcription factor for endocrine specification in the pancreas.
View Article and Find Full Text PDFThe growth and renewal of epithelial tissue is a highly orchestrated and tightly regulated process occurring in different tissue types under a variety of circumstances. We have been studying the process of pancreatic regeneration in mice. We have identified a cell surface protein, named EP1, which is expressed on the duct epithelium during pancreatic regeneration.
View Article and Find Full Text PDFLimited organ availability is an obstacle to the widespread use of islet transplantation in type 1 diabetic patients. To address this problem, many studies have explored methods for expanding functional human islets in vitro for diabetes cell therapy. We previously showed that islet cells replicate after monolayer formation under the influence of hepatocyte growth factor and selected extracellular matrices.
View Article and Find Full Text PDFFibroblast growth factors (FGFs) and their receptors (FGFRs) are key signaling molecules for pancreas development. Although FGFR3 is a crucial developmental gene, acting as a negative regulator of bone formation, its participation remains unexplored in pancreatic organogenesis. We found that FGFR3 was expressed in the epithelia in both mouse embryonic and adult regenerating pancreata but was absent in normal adult islets.
View Article and Find Full Text PDFGut peptide YY (PYY) plays an important role in regulating metabolism and is expressed during the ontogeny of the pancreas. However, its biological role during endocrine cell formation is not fully understood, and its role, if any, during pancreatic regeneration in the adult has not yet been explored. The knowledge of factors involved in beta cell renewal in adult animals is clearly relevant for the design of treatment strategies for type 1 diabetes.
View Article and Find Full Text PDFActivins regulate the growth and differentiation of a variety of cells. During pancreatic islet development, activins are required for the specialization of pancreatic precursors from the gut endoderm during midgestation. In this study, we probed the role of activin signaling during pancreatic islet cell development and regeneration.
View Article and Find Full Text PDFHyperplasia of the middle ear mucosa contributes to the sequelae of acute otitis media. Understanding the signal transduction pathways that mediate hyperplasia could lead to the development of new therapeutic interventions for this disease and its sequelae. Endotoxin derived from bacteria involved in middle ear infection can contribute to the hyperplastic response.
View Article and Find Full Text PDFThe SDF-1alpha/CXCR4 ligand/chemokine receptor pair is required for appropriate patterning during ontogeny and stimulates the growth and differentiation of critical cell types. Here, we demonstrate SDF-1alpha and CXCR4 expression in fetal pancreas. We have found that SDF-1alpha and its receptor CXCR4 are expressed in islets, also CXCR4 is expressed in and around the proliferating duct epithelium of the regenerating pancreas of the interferon (IFN) gamma-nonobese diabetic mouse.
View Article and Find Full Text PDFHyperplasia of middle-ear mucosa (MEM) during otitis media (OM) is thought to be partially mediated by the actions of growth factors and their receptors. The intracellular pathway leading from the small G-protein Ras to the extracellular regulated kinases (Erks) often links growth factor stimulation to cellular proliferation. This study assessed whether this pathway is involved in MEM hyperplasia during bacterial OM via the activation of Erk1/Erk2 in MEM of an in vivo rat bacterial OM model.
View Article and Find Full Text PDFThere is increasing evidence that protein kinase C (PKC) isoforms modulate insulin-signaling pathways in both positive and negative ways. Recent reports have indicated that the novel PKCdelta mediates some of insulin's actions in muscle and liver cells. Many studies use the specific inhibitor rottlerin to demonstrate the involvement of PKCdelta.
View Article and Find Full Text PDFBased on recent studies showing that PLCgamma associates to insulin receptor, we investigated its role in insulin stimulation of glucose transport in brown adipocytes. Insulin stimulation induced rapid PLCgamma association to phosphorylated insulin receptor, and activation of PLCgamma, as assessed by the mobilization of Ca(2+) from intracellular stores and by the production of the second messenger DAG. Both events are dependent on activation of PI3-kinase.
View Article and Find Full Text PDFPreviously, we had shown that inhibition of PLC activity impaired the ability of insulin to activate ERK in 3T3-L1 adipocytes. In this study, we confirmed that the insulin receptor and PLC-gamma1 are physically associated in hIRcB fibroblasts, insulin stimulates PLC-gamma1 enzyme activity, and inhibition of PLC activity impairs activation of ERK. We subsequently investigated whether PLC-gamma1 is required for insulin-stimulated mitogenesis.
View Article and Find Full Text PDF