Publications by authors named "Ayse Ceren Calikoglu Koyuncu"

New gelatin methacryloyl (GelMA)-strontium-doped nanosize hydroxyapatite (SrHA) composite hydrogel scaffolds were developed using UV photo-crosslinking and 3D printing for bone tissue regeneration, with the controlled delivery capacity of strontium (Sr). While Sr is an effective anti-osteoporotic agent with both anti-resorptive and anabolic properties, it has several important side effects when systemic administration is applied. Multi-layer composite scaffolds for bone tissue regeneration were developed based on the digital light processing (DLP) 3D printing technique through the photopolymerization of GelMA.

View Article and Find Full Text PDF

Tympanic membrane (TM) perforations, primarily induced by middle ear infections, the introduction of foreign objects into the ear, and acoustic trauma, lead to hearing abnormalities and ear infections. We describe the design and fabrication of a novel composite patch containing photocrosslinkable gelatin methacryloyl (GelMA) and keratin methacryloyl (KerMA) hydrogels. GelMA-KerMA patches containing conical microneedles in their design were developed using the digital light processing (DLP) 3D printing approach.

View Article and Find Full Text PDF

Cartilage is frequently damaged with a limited capacity for repair. Current treatment strategies are insufficient as they form fibrocartilage as opposed to hyaline cartilage, and do not prevent the progression of degenerative changes. There is increasing interest in the use of autologous mesenchymal stem cells (MSC) for tissue regeneration.

View Article and Find Full Text PDF

As cartilage is incapable of self-healing upon severe degeneration because of the lack of blood vessels, cartilage tissue engineering is gaining importance in the treatment of cartilage defects. This study was designed to improve cartilage tissue regeneration by expressing tissue transglutaminase variant 2 (TGM2_v2) in mesenchymal stem cells (MSC) derived from bone marrow of rats. For this purpose, rat MSCs transduced with TGM2_v2 were grown and differentiated on three-dimensional polybutylene succinate (PBSu) and poly-l-lactide (PLLA) blend scaffolds.

View Article and Find Full Text PDF

Background: In vitro evaluation of cell-surface interactions for hard tissue implants have mostly been done using osteoblasts. However, when an implant is placed in the body, mesenchymal stem cells (MSCs) play a major role in new bone formation. Therefore, using MSCs in cell-surface investigations may provide more reliable information on the prediction of in vivo behavior of implants.

View Article and Find Full Text PDF

In this study, fibrous scaffolds based on poly(γ-benzyl-l-glutamate) (PBLG) were investigated in terms of the chondrogenic differentiation potential of human tooth germ stem cells (HTGSCs). Through the solution-assisted bonding of the fibres, fully connected scaffolds with pore sizes in the range 20-400 µm were prepared. Biomimetic modification of the PBLG scaffolds was achieved by a two-step reaction procedure: first, aminolysis of the PBLG fibres' surface layers was performed, which resulted in an increase in the hydrophilicity of the fibrous scaffolds after the introduction of N -hydroxyethyl-l-glutamine units; and second, modification with the short peptide sequence azidopentanoyl-GGGRGDSGGGY-NH , using the 'click' reaction on the previously modified scaffold with 2-propynyl side-chains, was performed.

View Article and Find Full Text PDF

TiN and (Ti,Mg)N thin film coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition (arc-PVD) technique with magnesium contents of 0, 4.24 at% (low Mg) and 10.42 at% (high Mg).

View Article and Find Full Text PDF