Genome-wide protein-protein interaction (PPI) determination remains a significant unsolved problem in structural biology. The difficulty is twofold since high-throughput experiments (HTEs) have often a relatively high false-positive rate in assigning PPIs, and PPI quaternary structures are more difficult to solve than tertiary structures using traditional structural biology techniques. We proposed a uniform pipeline, Threpp, to address both problems.
View Article and Find Full Text PDFGalaxy (homepage: https://galaxyproject.org, main public server: https://usegalaxy.org) is a web-based scientific analysis platform used by tens of thousands of scientists across the world to analyze large biomedical datasets such as those found in genomics, proteomics, metabolomics and imaging.
View Article and Find Full Text PDFHigh-throughput data production technologies, particularly 'next-generation' DNA sequencing, have ushered in widespread and disruptive changes to biomedical research. Making sense of the large datasets produced by these technologies requires sophisticated statistical and computational methods, as well as substantial computational power. This has led to an acute crisis in life sciences, as researchers without informatics training attempt to perform computation-dependent analyses.
View Article and Find Full Text PDFThe laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse.
View Article and Find Full Text PDFThe key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions.
View Article and Find Full Text PDFA web service for analysis of protein structures that are sequentially or non-sequentially similar was generated. Recently, the non-sequential structure alignment algorithm GANGSTA+ was introduced. GANGSTA+ can detect non-sequential structural analogs for proteins stated to possess novel folds.
View Article and Find Full Text PDFDue to the large number of available protein structure alignment algorithms, a lot of effort has been made to define robust measures to evaluate their performances and the quality of generated alignments. Most quality measures involve the number of aligned residues and the RMSD. In this work, we analyze how these two properties are influenced by different residue assignment strategies as employed in common non-sequential structure alignment algorithms.
View Article and Find Full Text PDFFinding and identifying circular permuted protein pairs (CPP) is one of the harder tasks for structure alignment programs, because of the different location of the break in the polypeptide chain connectivity. The protein structure alignment tool GANGSTA+ was used to search for CPPs in a database of nearly 10,000 protein structures. It also allows determination of the statistical significance of the occurrence of circular permutations in the protein universe.
View Article and Find Full Text PDFInsights in structural biology can be gained by analyzing protein architectures and characterizing their structural similarities. Current computational approaches enable a comparison of a variety of structural and physicochemical properties in protein space. Here we describe the automated detection of rotational symmetries within a representative set of nearly 10,000 nonhomologous protein structures.
View Article and Find Full Text PDFNewly determined protein structures are classified to belong to a new fold, if the structures are sufficiently dissimilar from all other so far known protein structures. To analyze structural similarities of proteins, structure alignment tools are used. We demonstrate that the usage of nonsequential structure alignment tools, which neglect the polypeptide chain connectivity, can yield structure alignments with significant similarities between proteins of known three-dimensional structure and newly determined protein structures that possess a new fold.
View Article and Find Full Text PDFThe Superimposé webserver performs structural similarity searches with a preference towards 3D structure-based methods. Similarities can be detected between small molecules (e.g.
View Article and Find Full Text PDFProtein-protein docking is a major task in structural biology. In general, the geometries of protein pairs are sampled by generating docked conformations, analyzing them with scoring functions and selecting appropriate geometries for further refinement. Here, we present an algorithm in real space to sample geometries of protein pairs.
View Article and Find Full Text PDF