Publications by authors named "Ayrton Bernussi"

β-Crystalline phase gallium oxide (β-GaO) is an ultrawide bandgap material with prospective applications in electronics and deep ultraviolet (DUV) optoelectronics and optics. The monoclinic crystal structure of β-GaO results in optical anisotropy to incident light with different polarization states. This attribute can lead to different optical applications in the DUV.

View Article and Find Full Text PDF

Optical delay lines control the flow of light in time, introducing phase and group delays for engineering interferences and ultrashort pulses. Photonic integration of such optical delay lines is essential for chip-scale lightwave signal processing and pulse control. However, typical photonic delay lines based on long spiral waveguides require extensively large chip footprints, ranging from mm to cm scales.

View Article and Find Full Text PDF

The major issues confronting the performance of deep-UV (DUV) laser diodes (LDs) are reviewed along with the different approaches aimed at performance improvement. The impact of threading dislocations on the laser threshold current, limitations on heavy n- and p-doping in Al-rich AlGaN alloys, unavoidable electron leakage into the p-layers of (0001) LD structures, implementation of tunnel junctions, and non-uniform hole injection into multiple quantum wells in the active region are discussed. Special attention is paid to the current status of n- and p-type doping and threading dislocation density reduction, both being the factors largely determining the performance of DUV-LDs.

View Article and Find Full Text PDF

Vanadium dioxide (VO) has been proposed as a phase-change material in tunable photonic and optoelectronic devices. In such devices, a thin layer of VO is typically deposited on metallic or insulating surfaces. In this Letter, we report the reflectance spectra of a subwavelength structure consisting of a thin layer of VO deposited on a gold film in the near-infrared spectral range, particularly near the wavelength of 1550 nm, which is significant for telecommunication applications.

View Article and Find Full Text PDF

Herpes simplex virus is among the most prevalent sexually transmitted infections. Acyclovir is a potent, selective inhibitor of herpes viruses and it is indicated for the treatment and management of recurrent cold sores on the lips and face, genital herpes, among other diseases. The problem of the oral bioavailability of acyclovir is limited because of the low permeability across the gastrointestinal membrane.

View Article and Find Full Text PDF

A 4-f imaging arrangement of lenses with a camera and a rotating slit placed at the Fourier plane of the system was used to obtain the optical disturbance produced by a macroscopic sample. The sample was illuminated by collimated beams from white-light and thermal radiation sources. The agreement between simulated and experimental results, obtained by processing the captured images using a Fourier ptychographic algorithm, demonstrates that scanning with the slit the direction of the light diffracted by the sample permits achieving the image diversity necessary for successful implementation of the scanning diffracted-light imaging technique.

View Article and Find Full Text PDF

Scanning the direction of the light that is diffracted by a sample permits the achievement of image diversity, which is necessary for implementing the Fourier ptychographic microscopy technique (FPM) using only perpendicular illumination. We also demonstrated that the same method allows for implementation of the illumination-direction-multiplexing FPM technique when the sample is illuminated using a ring-shaped condenser.

View Article and Find Full Text PDF

We used a rotating slit placed at the back focal plane of the microscope's objective lens to scan the light diffracted by a plasmonic crystal, which had a period smaller than the resolution limit of the optical microscope. A set of images were collected at different orientations of the slit. A high-resolution image of the plasmonic crystal was obtained by processing the experimental images using a numerical Fourier ptychographic algorithm.

View Article and Find Full Text PDF

Fourier ptychographic microscopy is demonstrated in the near-infrared spectral range using a computer-controlled hemispherical digital condenser comprising multiple 940 nm wavelength light emitting diodes. This technique was used to image periodic patterned samples (photonic crystals). Experimental and simulated results using a phase retrieval algorithm were found to be in excellent correspondence.

View Article and Find Full Text PDF

We present a computer-controlled hemispherical digital condenser and demonstrate that a single device can be used to implement a variety of both well established and novel optical microscopy techniques. We verified the condenser capabilities by imaging fabricated periodic patterned structures and biological samples.

View Article and Find Full Text PDF

We present a simple method for obtaining direct non-scanning images in the far-field with subwavelength resolution. Our approach relies on the use of a digital optical condenser comprised of an array of light emitting diodes uniformly distributed inside of a hollow hemisphere. We demonstrate experimental observation of minimum feature sizes of the order of λ/6 with the proposed technique.

View Article and Find Full Text PDF

We report metamaterial terahertz (THz) bandpass filters with tunable dual-band selectivity. The shift in the center frequency of the device is achieved by actively modifying the effective length of the resonators. This was realized by introducing vanadium dioxide (VO2) bridges interconnecting specific regions of each resonator.

View Article and Find Full Text PDF

We present a general discussion about the fundamental physical principles involved in a novel class of optical superlenses that permit to realize in the far-field direct non-scanning images with subwavelength resolution. Described superlenses are based in the illumination of the object under observation with surface waves excited by fluorescence, the enhanced transmission of fluorescence via coupling with surface waves, and the occurrence of far-field coherence-related fluorescence diffraction phenomena. A Fourier optics description of the image formation based on illumination with surface waves is presented, and several recent experimental realizations of this technique are discussed.

View Article and Find Full Text PDF

Optical images from nano-scale features were obtained by collection of leakage radiation coupled to surface plasmon polaritons excited by near-field fluorescence. Plasmonic crystals with spatial periods as small as 190 nm and non-periodic features separated by 80 nm, corresponding to ~λ/7, were clearly visible in the real plane images using this far-field technique. We show that the leaked light from the investigated samples carries detailed information to the far-field which is not present in the images obtained with conventional optical microscopy.

View Article and Find Full Text PDF

Bandpass filters are reported based on double-stacked metamaterial layers separated by an air gap for operation at terahertz frequencies. Several stacking configurations were investigated designed for a ~0.5 THz center frequency.

View Article and Find Full Text PDF