Sulfur-containing groups preorganized on macrocyclic scaffolds are well suited for liquid-phase complexation of soft metal ions; however, their binding potential was not extensively studied at the air-water interface, and the effect of thioether topology on metal ion binding mechanisms under various conditions was not considered. Herein, we report the interface receptor characteristics of topologically varied thiacalixarene thioethers (linear bis-(methylthio)ethoxy derivative , OS-thiacrown-ether , and OS-bridged thiacalixtube ). The study was conducted in bulk liquid phase and Langmuir monolayers.
View Article and Find Full Text PDFUnderstanding the interaction of ions with organic receptors in confined space is of fundamental importance and could advance nanoelectronics and sensor design. In this work, metal ion complexation of conformationally varied thiacalix[4]monocrowns bearing lower-rim hydroxy (type I), dodecyloxy (type II), or methoxy (type III) fragments was evaluated. At the liquid-liquid interface, alkylated thiacalixcrowns-5(6) selectively extract alkali metal ions according to the induced-fit concept, whereas crown-4 receptors were ineffective due to distortion of the crown-ether cavity, as predicted by quantum-chemical calculations.
View Article and Find Full Text PDF