Potential genotoxicity and carcinogenicity of carbon nanotubes (CNT), as well as the underlying mechanisms, remains a pressing topic. The study aimed to evaluate and compare the genotoxic effect and mechanisms of DNA damage under exposure to different types of CNT. Immortalized human cell lines of respiratory origin BEAS-2B, A549, MRC5-SV40 were exposed to three types of CNT: MWCNT Taunit-M, pristine and purified SWCNT TUBALL™ at concentrations in the range of 0.
View Article and Find Full Text PDFSerious concerns about the negative impact of ethylenediaminetetraacetic acid (EDTA) on the environment resulted in severe restrictions imposed on this compound in many countries. One of the main concerns is related to the use of EDTA in agriculture as a chelator in microelement fertilizers: being introduced directly into the sawing fields, it penetrates into groundwater, with no chance to be captured/recycled. Respectively, there is an active search for environmentally friendly, biodegradable alternatives for this chelator.
View Article and Find Full Text PDFControlling the permittivity of dielectric composites is critical for numerous applications dealing with matter/electromagnetic radiation interaction. In this study, we have prepared polymer composites, based on a silicone elastomer matrix and Tuball carbon nanotubes (CNT) via a simple preparation procedure. The as-prepared composites demonstrated record-high dielectric permittivity both in the low-frequency range (102−107 Hz) and in the X-band (8.
View Article and Find Full Text PDFCarbonaceous immunosensors are ideal nanoplatforms for developing rapid, precise, and ultra-specific diagnostic kits capable of early detection of viral infectious illnesses such as COVID-19. However, developing a proper carbonic immunosensor requires stepwise protocols to find optimum operating conditions to minimize drawbacks. Herein, for the first time and through a stepwise protocol, activation, and monoclonal IgG antibody mounting capability of multi-walled carbon nanotubes (MWCNTs) at two diverse outer diameters (ODs), viz.
View Article and Find Full Text PDFIn this study, we investigate the chemical interactions of Mn ions with graphene oxides, prepared by Hummers' (HGO) and Brodie's (BGO) methods in aqueous solutions by means of NMR relaxation. Carboxyl groups, which are always present in HGO in significant quantities, are often considered as the main binding sites for metal ions. Here we demonstrate that metal ions are bound efficiently by BGO, containing a negligibly small quantity of carboxyl groups.
View Article and Find Full Text PDFDespite enormous interest toward graphene oxide (GO) from the research community, surprisingly, little is known about its solutions. In particular, the questions related to the structure of the GO/liquid interface have not been yet properly addressed. In this report, we use a simple but efficient experimental approach to investigate the distribution of the four metal cations Na, Cs, Ni, and Gd at the GO/water interface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2018
Graphene oxide (GO) aqueous solutions are known to form liquid crystals that can switch in electric fields. Magnetic fields as external stimuli are inefficient toward GO because of its diamagnetic properties, and GO is known to be insoluble in most of the organic solvents. In this study, composites of GO with oleate-protected magnetite nanoparticles were prepared as stable colloid solutions in the mixed isopropanol-chloroform solvents.
View Article and Find Full Text PDFStabilizing nanoparticles on surfaces, such as graphene, is a growing field of research. Thereby, iron particle stabilization on carbon materials is attractive and finds applications in charge-storage devices, catalysis, and others. In this work, we describe the discovery of iron nanoparticles with the face-centered cubic structure that was postulated not to exist at ambient conditions.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2018
Graphene oxide (GO) have emerged recently as a novel material for sorbing metal cations from aqueous media. However, the literature data on sorption capacity differ by more than one order in magnitude, and the nature of the chemical bonding between GO and metal cations remains unclear. In this work we show that Gd ions are bound to GO by both coordinate-covalent bonding and electrostatic attraction with prevailing the former.
View Article and Find Full Text PDFThe sorption capacity of graphene oxide (GO) toward different metal cations has been the subject of several recent studies. However, the reported quantitative data are controversial, and the mechanism of chemical bonding between GO and metal cations is poorly understood. Clarifying these questions can eventually help to reveal the fine chemical structure of GO that remains ambiguous.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2017
One of the main advantages of graphene oxide (GO) over its non-oxidized counterpart is its ability to form stable solutions in water and some organic solvents. At the same time, the nature of GO solutions is not completely understood; the existing data are scarce and controversial. Here, we demonstrate that the solubility of GO, and the stability of the as-formed solutions depend not just on the solute and solvent cohesion parameters, as commonly believed, but mostly on the chemical interactions at the GO/solvent interface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2017
The quality of polymer composite materials depends on the distribution of the filler in the polymer matrix. Due to the presence of the oxygen functional groups, graphene oxide (GO) has a strong affinity to epoxy resins, providing potential opportunity for the uniform distribution of GO sheets in the matrix. Another advantage of GO over its nonoxidized counterpart is its ability to exfoliate to single-atomic-layer sheets in water and in some organic solvents.
View Article and Find Full Text PDFSuccessful application of graphene is hampered by the lack of cost-effective methods for its production. Here, we demonstrate a method of mass production of graphene nanoplatelets (GNPs) by exfoliation of flake graphite in the tricomponent system made by a combination of ammonium persulfate ((NH4)2S2O8), concentrated sulfuric acid, and fuming sulfuric acid. The resulting GNPs are tens of microns in diameter and 10-35 nm in thickness.
View Article and Find Full Text PDFDespite intensive research, the mechanism of graphene oxide (GO) formation remains unclear. The role of interfacial interactions between solid graphite and the liquid reaction medium, and transport of the oxidizing agent into the graphite, has not been well-addressed. In this work, we show that formation of GO from graphite constitutes three distinct independent steps.
View Article and Find Full Text PDFNew lightweight, flexible dielectric composite materials were fabricated by the incorporation of several new carbon nanostructures into a dielectric host matrix. Both the permittivity and loss tangent values of the resulting composites were widely altered by varying the type and content of the conductive filler. The dielectric constant was tuned from moderate to very high values, while the corresponding loss tangent changed from ultralow to extremely high.
View Article and Find Full Text PDFGraphite intercalation compounds (GIC) possess a broad range of unique properties that are not specific to the parent materials. While the stage transition, changing the number of graphene layers sandwiched between the two layers of intercalant, is fundamentally important and has been theoretically addressed, experimental studies revealed only macroscopic parameters. On the microscale, the phenomenon remains elusive up to the present day.
View Article and Find Full Text PDFHere we demonstrate a simple, nondestructive method for the preparation of stable aqueous colloidal solutions of graphene nanoribbons and carbon nanotubes. The method includes sonication of carbon nanomaterials in hypophosphorous acid, filtration accompanied by washing the solids with water and dispersion of the solids in a fresh portion of water to form colloidal solutions.
View Article and Find Full Text PDFThe existing structural models of graphene oxide (GO) contradict each other and cannot adequately explain the acidity of its aqueous solutions. Inadequate understanding of chemical structure can lead to a misinterpretation of observed experimental phenomena. Understanding the chemistry and structure of GO should enable new functionalization protocols while explaining GO's limitations due to its water instability.
View Article and Find Full Text PDFGraphite intercalation compounds (GICs) can be considered stacks of individual doped graphene layers. Here we demonstrate a reversible formation of sulfuric acid-based GICs using ammonium persulfate as the chemical oxidizing agent. No covalent chemical oxidation leading to the formation of graphite oxide occurs, which inevitably happens when other compounds such as potassium permanganate are used to charge carbon layers.
View Article and Find Full Text PDFMulti-layer graphene nanoribbons have been made highly water soluble (4.7 mg ml(-1)) and stable for the first time by repetitious derivatization with p-carboxyphenyldiazonium salt; similarly, single-walled carbon nanotubes (4.8 mg ml(-1)) and ultra-short carbon nanotubes (50 mg ml(-1)) can also be made highly soluble by the methodology.
View Article and Find Full Text PDFA cost-effective and potentially industrially scalable, in situ functionalization procedure for preparation of soluble graphene nanoribbon (GNRs) from commercially available carbon nanotubes is presented. The physical characteristics of the functionalized product were determined using SEM, evolved gas analysis, X-ray diffraction, solid-state (13)C NMR, Raman spectroscopy, and GC-MS analytical techniques. A relatively high preservation of electrical properties in the bulk material was observed.
View Article and Find Full Text PDF