Background: Dysregulation of iron metabolism is implicated in malignant transformation, cancer progression, and therapeutic resistance. Here, we demonstrate that iron regulatory protein 2 (IRP2) preferentially regulates iron metabolism and promotes tumor growth in colorectal cancer (CRC).
Methods: IRP2 knockdown and knockout cells were generated using RNA interference and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 methodologies, respectively.
The prevalence of a novel β-coronavirus (SARS-CoV-2) was declared as a public health emergency of international concern on 30 January 2020 and a global pandemic on 11 March 2020 by WHO. The spike glycoprotein of SARS-CoV-2 is regarded as a key target for the development of vaccines and therapeutic antibodies. In order to develop anti-viral therapeutics for SARS-CoV-2, it is crucial to find amino acid pairs that strongly attract each other at the interface of the spike glycoprotein and the human angiotensin-converting enzyme 2 (hACE2) complex.
View Article and Find Full Text PDFDDX3 belongs to RNA helicase family that demonstrates oncogenic properties and has gained wider attention due to its role in cancer progression, proliferation and transformation. Mounting reports have evidenced the role of DDX3 in cancers making it a promising target to abrogate DDX3 triggered cancers. Dual pharmacophore models were generated and were subsequently validated.
View Article and Find Full Text PDFProgeria is a globally noticed rare genetic disorder manifested by premature aging with no effective treatment. Under these circumstances, farnesyltransferase inhibitors (FTIs) are marked as promising drug candidates. Correspondingly, a pharmacophore model was generated exploiting the features of lonafarnib.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
January 2020
Following publication of the original article [1], the authors reported errors in Figure 3, Figure 14a, Figure 18, Figure 19b, Additional file 3 and Additional file 7.
View Article and Find Full Text PDFBreast cancer is one of the major impediments affecting women globally. The ATP-dependant heat shock protein 90 (Hsp90) forms the central component of molecular chaperone machinery that predominantly governs the folding of newly synthesized peptides and their conformational maturation. It regulates the stability and function of numerous client proteins that are frequently upregulated and/or mutated in cancer cells, therefore, making Hsp90 inhibition a promising therapeutic strategy for the development of new efficacious drugs to treat breast cancer.
View Article and Find Full Text PDFBreast cancer (BC) is the leading cause of death among women worldwide devoid of effective treatment. It is therefore important to develop agents that can reverse, reduce, or slow the growth of BC. The use of natural products as chemopreventive agents provides enormous advantages.
View Article and Find Full Text PDFAngiogenesis is defined as the formation of new blood vessels and is a key phenomenon manifested in a host of cancers during which tyrosine kinases play a crucial role. Vascular endothelial growth factor receptor-2 (VEGFR-2) is pivotal in cancer angiogenesis, which warrants the urgency of discovering new anti-angiogenic inhibitors that target the signalling pathways. To obtain this objective, a structure-based pharmacophore model was built from the drug target VEGFR-2 (PDB code: 4AG8), complexed with axitinib and was subsequently validated and employed as a 3D query to retrieve the candidate compounds with the key inhibitory features.
View Article and Find Full Text PDFDihydrofolate reductase (DHFR) is an essential cellular enzyme and thereby catalyzes thereduction of dihydrofolate to tetrahydrofolate (THF). In cancer medication, inhibition of humanDHFR (hDHFR) remains a promising strategy, as it depletes THF and slows DNA synthesis and cellproliferation. In the current study, ligand-based pharmacophore modeling identified and evaluatedthe critical chemical features of hDHFR inhibitors.
View Article and Find Full Text PDFProlyl oligopeptidase (POP) is a potential therapeutic target for treatment of several neurological disorders and α-synucleinopathies including Parkinson's disease. Most of the known POP inhibitors failed in the clinical trials due to poor pharmacokinetic properties and blood-brain impermeability. Therefore, a training set of 30 structurally diverse compounds with a wide range of inhibitory activity against POP was used to generate a quantitative pharmacophore model, Hypo 3, to identify potential POP inhibitors with desirable drug-like properties.
View Article and Find Full Text PDFBacterial peptide deformylase (PDF) is an attractive target for developing novel inhibitors against several types of multidrug-resistant bacteria. The objective of the current study is to retrieve potential phytochemicals as prospective drugs against peptide deformylase (SaPDF). The current study focuses on applying ligand-based pharmacophore model (PharmL) and receptor-based pharmacophore (PharmR) approaches.
View Article and Find Full Text PDFChagas disease is one of the primary causes of heart diseases accounting to 50,000 lives annually and is listed as the neglected tropical disease. Because the currently available therapies have greater toxic effects with higher resistance, there is a dire need to develop new drugs to combat the disease. In this pursuit, the 3D QSAR ligand-pharmacophore (pharm 1) and receptor-based pharmacophore (pharm 2) search was initiated to retrieve the candidate compounds from universal natural compounds database.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
March 2020
Aromatase inhibitors with an $\mathrm{IC}_{50}$ IC 50 value ranging from 1.4 to 49.7 µM are known to act as antiepileptic drugs besides being potential breast cancer inhibitors.
View Article and Find Full Text PDFHuman epidermal growth factor receptors are implicated in several types of cancers characterized by aberrant signal transduction. This family comprises of EGFR (ErbB1), HER2 (ErbB2, HER2/neu), HER3 (ErbB3), and HER4 (ErbB4). Amongst them, HER2 is associated with breast cancer and is one of the most valuable targets in addressing the breast cancer incidences.
View Article and Find Full Text PDFBackground: Antibiotic resistance is a defense mechanism, harbored by pathogens to survive under unfavorable conditions. Among several antibiotic resistant microbial consortium, Staphylococcus aureus is one of the most havoc microorganisms. Staphylococcus aureus encodes a unique enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), against which, none of existing antibiotics have been reported.
View Article and Find Full Text PDFBackground: Angiogenesis is a process of formation of new blood vessels and is an important criteria demonstrated by cancer cells. Over a period of time, these cancer cells infect the other parts of the healthy body by a process called progression. The objective of the present article is to identify a drug molecule that inhibits angiogenesis and progression.
View Article and Find Full Text PDFProgeria is a rare genetic disorder characterized by premature aging that eventually leads to death and is noticed globally. Despite alarming conditions, this disease lacks effective medications; however, the farnesyltransferase inhibitors (FTIs) are a hope in the dark. Therefore, the objective of the present article is to identify new compounds from the databases employing pharmacophore based virtual screening.
View Article and Find Full Text PDFProlyl oligopeptidase (POP) is a serine protease that is responsible for the maturation and degradation of short neuropeptides and peptide hormones. The inhibition of POP has been demonstrated in the treatment of α-synucleinopathies and several neurological conditions. Therefore, ligand-based and structure-based pharmacophore models were generated and validated in order to identify potent POP inhibitors.
View Article and Find Full Text PDFPlant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion.
View Article and Find Full Text PDFIt has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase.
View Article and Find Full Text PDF3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-controlling enzyme in the mevalonate pathway which involved in biosynthesis of cholesterol and other isoprenoids. This enzyme catalyzes the conversion of HMG-CoA to mevalonate and is regarded as a drug target to treat hypercholesterolemia. In this study, ten qualitative pharmacophore models were generated based on chemical features in active inhibitors of HMGR.
View Article and Find Full Text PDFThe acetylcholinesterase (AChE) is important to terminate acetylcholine-mediated neurotransmission at cholinergic synapses. The pivotal role of AChE in apoptosome formation through the interactions with cytochrome c (Cyt c) was demonstrated in recent study. In order to investigate the proper binding conformation between the human AChE (hAChE) and human Cyt c (hCyt c), macro-molecular docking simulation was performed using DOT 2.
View Article and Find Full Text PDF