Polymer-based nanocomposite coatings that are enhanced with nanoparticles have gained recognition as effective materials for antibacterial purposes, providing improved durability and biocidal effectiveness. This research introduces an innovative chitosan-based polymer nanocomposite, enhanced with titanium oxide nanopowders and carbon quantum dots. The material was synthesized via the sol-gel process and applied to 316L stainless steel through dip-coating.
View Article and Find Full Text PDFThe development of new polymer nanocomposites or antibacterial coatings is crucial in combating drug-resistant infections, particularly bacterial infections. In this study, a new chitosan polymer based nanocomposite reinforced with magnesium oxide nanopowders and carbon quantum dots was fabricated by sol-gel technique and coated on 316 L stainless steel. In order to gaining the optimal amount of components to achieve the maximum antibacterial properties, the effect of concentration of nanocomposite components on its antibacterial properties was investigated.
View Article and Find Full Text PDFIn recent decades, healthcare-associated infections (HAIs) have become a common problem in healthcare facilities such as hospitals. As a result, researchers are currently developing nanocomposite coatings that are strengthened with antibacterial nanoparticles. In this research, a novel antibacterial bionanocomposite coating based on carboxymethyl cellulose polymer/copper oxide nanoparticles/carbon quantum dots was coated on medical grade 316 stainless steel by sol-gel dip-coating method.
View Article and Find Full Text PDFDue to the significance growth in application of polymer-based nanocomposites, different methods of synthesis and different reinforces have been studied in recent years for specific purposes. In this study, using the direct blending process, polyvinyl alcohol-arabic gum-magnesium oxide nanocomposites were synthesized. These synthesized nanocomposites were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray energy diffraction (EDS) spectroscopy, X-ray surface elemental mapping (X-Ray Map), transmission electron microscopy (TEM), ultraviolet -visible (UV-vis) spectrophotometry and thermal gravimetery analysis (TGA).
View Article and Find Full Text PDF