Publications by authors named "Ayoub Jaafar"

Modulating memristors optically paves the way for new optoelectronic devices with applications in computer vision, neuromorphic computing, and artificial intelligence. Here, we report on memristors based on a hybrid material of vertically aligned zinc oxide nanorods (ZnO NRs) and poly(methyl methacrylate) (PMMA). The memristors require no forming step and exhibit the typical electronic switching properties of a bipolar memristor.

View Article and Find Full Text PDF
Article Synopsis
  • * These devices exhibit a mixed-mode switching capability, enabling them to operate in both short-term and long-term memory states, which can be influenced by the voltage applied.
  • * The short-term mode can replicate various synaptic functions, while the long-term mode supports features for plasticity applications, highlighting their potential for adaptive neuromorphic computing systems.
View Article and Find Full Text PDF

In response to the growing need for efficient processing of temporal information, neuromorphic computing systems are placing increased emphasis on the switching dynamics of memristors. While the switching dynamics can be regulated by the properties of input signals, the ability of controlling it via electrolyte properties of a memristor is essential to further enrich the switching states and improve data processing capability. This study presents the synthesis of mesoporous silica (mSiO) films using a sol-gel process, which enables the creation of films with controllable porosities.

View Article and Find Full Text PDF

We report on the development of hybrid organic-inorganic material-based flexible memristor devices made by a fast and simple electrochemical fabrication method. The devices consist of a bilayer of poly(methyl methacrylate) (PMMA) and Te-rich GeSbTe chalcogenide nanoscale thin films sandwiched between Ag top and TiN bottom electrodes on both Si and flexible polyimide substrates. These hybrid memristors require no electroforming process and exhibit reliable and reproducible bipolar resistive switching at low switching voltages under both flat and bending conditions.

View Article and Find Full Text PDF

Memristors are emerging as promising candidates for practical application in reservoir computing systems that are capable of temporal information processing. Here, we experimentally implement a physical reservoir computing system using resistive memristors based on three-dimensional (3D)-structured mesoporous silica (mSiO) thin films fabricated by a low cost, fast and vacuum-free sol-gel technique. The learning capability and a classification accuracy of 100% on a standard machine learning dataset are experimentally demonstrated.

View Article and Find Full Text PDF

Nanoimprint lithography (NIL) is a fast, simple and high throughput technique that allows fabrication of structures with nanometre precision features at low cost. We present an advanced bilayer nanoimprint lithography approach to fabricate four terminal nanojunction devices for use in single molecule electronic studies. In the first part of this work, we demonstrate a NIL lift-off process using a bilayer resist technique that negates problems associated with metal side-wall tearing during lift-off.

View Article and Find Full Text PDF

Alignment of metal-organic framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that bromobenzene-suspended microrod crystals of the MOF NU-1000 can also be dynamically aligned via electric fields, giving rise to rapid electrooptical responses. This method of dynamic MOF alignment opens up new avenues of MOF control which are important for integration of MOFs into switchable electronic devices as well as in other applications such as reconfigurable sensors or optical systems.

View Article and Find Full Text PDF

Optical control of memristors opens the route to new applications in optoelectronic switching and neuromorphic computing. Motivated by the need for reversible and latched optical switching we report on the development of a memristor with electronic properties tunable and switchable by wavelength and polarization specific light. The device consists of an optically active azobenzene polymer, poly(disperse red 1 acrylate), overlaying a forest of vertically aligned ZnO nanorods.

View Article and Find Full Text PDF