The optimal interaction of drugs with plasma membranes and membranes of subcellular organelles is a prerequisite for desirable pharmacology. Importantly, for drugs targeting the transmembrane lipid-facing sites of integral membrane proteins, the relative affinity of a drug to the bilayer lipids compared to the surrounding aqueous phase affects the partitioning, access, and binding of the drug to the target site. Molecular dynamics (MD) simulations, including enhanced sampling techniques such as steered MD, umbrella sampling (US), and metadynamics, offer valuable insights into the interactions of drugs with the membrane lipids and water in atomistic detail.
View Article and Find Full Text PDFIn mammalian cells, all-trans farnesol, a 15-carbon isoprenol, is a product of the mevalonate pathway. It is the natural substrate of alcohol dehydrogenase and a substrate for CYP2E1, two enzymes implicated in ethanol metabolism. Studies have shown that farnesol is present in the human brain and inhibits voltage-gated Ca channels at much lower concentrations than ethanol.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) is a global health problem threatening safe, effective healthcare delivery in all countries and settings. The ability of microorganisms to become resistant to the effects of antimicrobials is an inevitable evolutionary process. The misuse and overuse of antimicrobial agents have increased the importance of a global focus on antimicrobial stewardship (AMS).
View Article and Find Full Text PDF