Objective: Glucocorticoid levels rise rapidly following status epilepticus and remain elevated for weeks after the injury. To determine whether glucocorticoid receptor activation contributes to the pathological sequelae of status epilepticus, mice were treated with a novel glucocorticoid receptor modulator, C108297.
Methods: Mice were treated with either C108297 or vehicle for 10 days beginning one day after pilocarpine-induced status epilepticus.
Adolescent animals are vulnerable to the effects of stress on brain development. We hypothesized that long-term effects of adolescent chronic stress are mediated by glucocorticoid receptor (GR) signaling. We used a specific GR modulator (CORT108297) to pharmacologically disrupt GR signaling in adolescent rats during exposure to chronic variable stress (CVS).
View Article and Find Full Text PDFClinical data suggest that the neuroendocrine stress response is chronically dysregulated in a subset of patients with temporal lobe epilepsy (TLE), potentially contributing to both disease progression and the development of psychiatric comorbidities such as anxiety and depression. Whether neuroendocrine dysregulation and psychiatric comorbidities reflect direct effects of epilepsy-related pathologies, or secondary effects of disease burden particular to humans with epilepsy (i.e.
View Article and Find Full Text PDFAberrant glucocorticoid secretion is implicated in the pathophysiology of stress-related disorders (i.e., depression, anxiety).
View Article and Find Full Text PDFStatus epilepticus (SE) induces rapid hyper-activation of the hypothalamo-pituitary-adrenocortical (HPA) axis. HPA axis hyperactivity results in excess exposure to high levels of circulating glucocorticoids, which are associated with neurotoxicity and depression-like behavior. These observations have led to the hypothesis that HPA axis dysfunction may exacerbate SE-induced brain injury.
View Article and Find Full Text PDFEpilepsy is a common neurological disease, affecting 2.4million people in the US. Among the many different forms of the disease, temporal lobe epilepsy (TLE) is one of the most frequent in adults.
View Article and Find Full Text PDFAdolescence is a period of substantial neuroplasticity in stress regulatory neurocircuits. Chronic stress exposure during this period leads to long-lasting changes in neuroendocrine function and emotional behaviors, suggesting adolescence may be a critical period for development of stress vulnerability. This study investigated the effects of exposure to 14 days of chronic variable stress (CVS) in late-adolescent (pnd 45-58) female rats on neuroendocrine function, neuropeptide mRNA expression and depressive-like behavior in adolescence (pnd 59) and in adulthood (pnd 101).
View Article and Find Full Text PDFPre-clinical and clinical studies have employed treatment with glucocorticoid receptor (GR) antagonists in an attempt to limit the deleterious behavioral and physiological effects of excess glucocorticoids. Here, we examined the effects of GR antagonists on neuroendocrine and behavioral stress responses, using two compounds: mifepristone, a GR antagonist that is also a progesterone receptor antagonist, and CORT 108297, a specific GR antagonist lacking anti-progestin activity. Given its well-documented impact on neuroendocrine and behavioral stress responses, imipramine (tricyclic antidepressant) served as a positive control.
View Article and Find Full Text PDFGlucocorticoid dyshomeostasis is observed in a proportion of depressed individuals. As a result, glucocorticoid receptor (GR) antagonists are currently being tested as potential anti-depressants. The current study was designed to test the efficacy of mifepristone, a GR antagonist, in mitigating behavioral, neuroendocrine and central nervous system (CNS) responses to an acute stressor.
View Article and Find Full Text PDF