Novel norbornene-based imine-stabilized silylium ions 2 have been synthesized the simple reaction of sulfide-stabilized silylium ion 1 with carbonyl derivatives. Those silylium ions were fully characterized in solution and in the solid state by NMR spectroscopy and X-ray diffraction analysis as well as DFT calculations. Unlike the previously reported phosphine-stabilized silylium ion VI, behaving as a Lewis pair, calculations show that 2 have a strong Lewis acid character.
View Article and Find Full Text PDFSeveral base-stabilized silyliumylidene ions (2 and 3) with different ligands were synthesized. Their behaviour appeared strongly dependent on the nature of ligand. Indeed, in contrast to the poorly reactive silyliumylidene ions 3 c,d stabilized by strongly donating ligands (DMAP, NHC), the silylene- and sulfide-supported one (2-H and 3 a) exhibits higher reactivity toward various small molecules.
View Article and Find Full Text PDFA norbornene-based sulfide stabilized silylium ion 4 has been synthesized. The S-Si interaction was studied in solution and in the solid state by NMR spectroscopy and X-ray diffraction analysis as well as DFT calculations. Unlike the previously reported phosphine-stabilized silylium ion VII, behaving as a Lewis pair, calculations predict that 4 should behave as a Lewis acid toward acrylate derivatives.
View Article and Find Full Text PDFDue to their remarkable electronic features, recent years have witnessed the emergence of carbones LC, which consist in two donating L ligands coordinating a central carbon atom bearing two lone pairs. In this context, the phosphine/sulfoxide-supported carbone exhibits a strong nucleophilic character, and here, we describe its ability to coordinate dichlorogermylene. Two original stable coordination complexes were obtained and fully characterized in solution and in the solid state by NMR spectroscopy and X-ray diffraction analysis, respectively.
View Article and Find Full Text PDFWe report the synthesis of a series of Zr and Ti complexes bearing phosphasalen which differs from salen by the incorporation of two P atoms in the ligand backbone. The reaction of phosphasalen proligands (1a-1c)H with Zr(CHPh) led to different products depending on the nature of the N,N-linker in the ligand. In the case of ethylene-linked phosphasalen, octahedral Zr complex 2a formed as a single stereoisomer in trans geometry.
View Article and Find Full Text PDF