Gynecol Obstet Invest
April 2024
Background: Uterine fibroids are benign monoclonal tumors originating from the smooth muscle cells of the myometrium, constituting the most prevalent pathology within the female genital tract. Uterine sarcomas, although rare, still represent a diagnostic challenge and should be managed in centers with adequate expertise in gynecological oncology.
Objectives: This article is aimed to summarize and discuss cutting-edge elements about the diagnosis and management of uterine fibroids and sarcomas.
Background: The stage, when tissues and organs are growing, is very vulnerable to environmental influences, but it's not clear how exposure during this time causes changes to the epigenome and increases the risk of hormone-related illnesses like uterine fibroids (UFs).
Methods: Developmental reprogramming of myometrial stem cells (MMSCs), the putative origin from which UFs originate, was investigated in vitro and in the Eker rat model by RNA-seq, ChIP-seq, RRBS, gain/loss of function analysis, and luciferase activity assays.
Results: When exposed to the endocrine-disrupting chemical (EDC) diethylstilbestrol during Eker rat development, MMSCs undergo a reprogramming of their estrogen-responsive transcriptome.
The period during which tissue and organ development occurs is particularly vulnerable to the influence of environmental exposures. However, the specific mechanisms through which biological pathways are disrupted in response to developmental insults, consequently elevating the risk of hormone-dependent diseases, such as uterine fibroids (UFs), remain poorly understood. Here, we show that developmental exposure to the endocrine-disrupting chemical (EDC), diethylstilbestrol (DES), activates the inflammatory pathways in myometrial stem cells (MMSCs), which are the origin of UFs.
View Article and Find Full Text PDFThree main uterine leiomyoma molecular subtypes include tumors with MED12 mutation, molecular aberrations leading to HMGA2 overexpression, and biallelic loss of FH. These aberrations are mutually exclusive and can be found in approximately 80-90% of uterine leiomyoma, in which they seem to be a driver event. Approximately 10% of uterine leiomyoma, however, does not belong to any of these categories.
View Article and Find Full Text PDFHigh-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients.
View Article and Find Full Text PDFThe absence of standardized molecular profiling to differentiate uterine leiomyosarcomas versus leiomyomas represents a current diagnostic challenge. In this study, we aimed to search for a differential molecular signature for these myometrial tumors based on artificial intelligence. For this purpose, differential exome and transcriptome-wide research was performed on histologically confirmed leiomyomas ( = 52) and leiomyosarcomas ( = 44) to elucidate differences between and within these two entities.
View Article and Find Full Text PDFUterine leiomyomas represent the most common benign gynecologic tumor. These hormone-dependent smooth-muscle formations occur with an estimated prevalence of ~70% among women of reproductive age and cause symptoms including pain, abnormal uterine bleeding, infertility, and recurrent abortion. Despite the prevalence and public health impact of uterine leiomyomas, available treatments remain limited.
View Article and Find Full Text PDFBackground: Although uterine leiomyomas and leiomyosarcomas are considered biologically unrelated tumors, they share morphologic and histologic characteristics that complicate their differential diagnosis. The long-term therapeutic option for leiomyoma is laparoscopic myomectomy with morcellation, particularly for patients who wish to preserve their fertility. However, because of the potential dissemination of undiagnosed or hidden leiomyosarcoma from morcellation, there is a need to develop a preoperative assessment of malignancy risk.
View Article and Find Full Text PDFStem Cell Res Ther
November 2018
Background: Myometrium, the muscular wall of the uterus, is an active organ markedly remodeled during a woman's reproductive life, especially during pregnancy. Different studies using the 5-bromo-2'-deoxyuridine and side population methods in murine and human myometrium have suggested the presence of somatic stem cells in this tissue because of its remarkable regenerative capacity. Recently, our group has developed a surface-marker (Stro1/CD44)-specific approach to isolate and characterize myometrial somatic stem cells (SSCs) from humans and rats.
View Article and Find Full Text PDFBackground: Stem cell research in the endometrium and myometrium from animal models and humans has led to the identification of endometrial/myometrial stem cells and their niches. This basic knowledge is beginning to be translated to clinical use for incurable uterine pathologies. Additionally, the implication of bone marrow-derived stem cells (BMDSCs) in uterine physiology has opened the field for the exploration of an exogenous and autologous source of stem cells.
View Article and Find Full Text PDFBiol Reprod
December 2019
Uterine leiomyomas (LM) and leiomyosarcomas (LMS) are considered biologically unrelated tumors due to their cytogenetic and molecular disparity. Yet, these tumors share morphological and molecular characteristics that cannot be differentiated through current clinical diagnostic tests, and thus cannot be definitively classified as benign or malignant until surgery. Newer approaches are needed for the identification of these tumors, as has been done for other tissues.
View Article and Find Full Text PDFUterine fibroids (UFs) are clonal, hormonally regulated, benign smooth-muscle myometrial tumors that severely affect female reproductive health, although their unknown etiology limits effective care. UFs occur fourfold more commonly in African American women than in Caucasian women, and African American women generally have earlier disease onset and greater UF tumor burden, although the mechanism of this ethnic disparity has not been identified. Recent findings have linked cancer (ie, tumor) risk to increased tissue-specific stem cell division and self-renewal and suggest that somatic mutations in myometrial stem cells (MyoSCs) convert them into tumor-initiating cells, leading to UF.
View Article and Find Full Text PDFDespite the major negative impact uterine fibroids (UFs) have on female reproductive health, little is known about early events that initiate development of these tumors. Somatic fibroid-causing mutations in mediator complex subunit 12 (MED12), the most frequent genetic alterations in UFs (up to 85% of tumors), are implicated in transforming normal myometrial stem cells (MSCs) into tumor-forming cells, though the underlying mechanism(s) leading to these mutations remains unknown. It is well accepted that defective DNA repair increases the risk of acquiring tumor-driving mutations, though defects in DNA repair have not been explored in UF tumorigenesis.
View Article and Find Full Text PDFUterine anatomy and uterine fibroids (UFs) characteristics have been classically considered as almost a unique issue in gynecology and reproductive medicine. Nowadays, the management of UF pathology is undergoing an important evolution, with the patient's quality of life being the most important aspect to consider. Accordingly, surgical techniques and aggressive treatments are reserved for only those cases with heavy symptomatology, while the clinical diagnostic based on size and number of UFs remains in a second plane in these situations.
View Article and Find Full Text PDFRegulation of myometrial functions during pregnancy has been considered the result of the integration of endocrine and mechanical signals. Nevertheless, uterine regeneration is poorly understood, and the cellular source within the gravid uterus is largely unexplored.In this study, we isolated and quantified the myometrial stem cells (MSC) population from pregnant female Eker rat uteri, by using Stro1/CD44 surface markers.
View Article and Find Full Text PDFUterine fibroids are the most common gynecologic tumors with a significant medical and financial burden. Several genetic, hormonal, and biological factors have been shown to contribute to the development and growth of fibroid tumors. Of these factors, estrogen is particularly critical since fibroids are considered estrogen dependent because no prepubertal cases have been described in the literature and tumors tend to regress after menopause.
View Article and Find Full Text PDFDespite the high prevalence and major negative impact of uterine fibroids (UFs) on women's health, their pathogenesis remains largely unknown. While tumor-initiating cells have been previously isolated from UFs, the cell of origin for these tumors in normal myometrium has not been identified. We isolated cells with Stro1/CD44 surface markers from normal myometrium expressing stem cell markers Oct-4/c-kit/nanog that exhibited the properties of myometrial stem/progenitor-like cells (MSCs).
View Article and Find Full Text PDFObjective: To identify and characterize myometrial/fibroid stem cells by specific stem cell markers in human myometrium, and to better understand the stem cell contribution in the development of uterine fibroids.
Design: Prospective, experimental human and animal study.
Setting: University research laboratory.
Uterine leiomyomas, also known as uterine fibroids, are the most common pelvic tumors, occurring in nearly 70% of all reproductive-aged women and are the leading indication for hysterectomy worldwide. The development of uterine leiomyomas involve a complex and heterogeneous constellation of hormones, growth factors, stem cells, genetic, and epigenetic abnormalities. An increasing body of evidence emphasizes the important contribution of epigenetics in the pathogenesis of leiomyomas.
View Article and Find Full Text PDFThe pathogenesis of uterine leiomyomas, the most common benign tumor in women, is still unknown. This lack of basic knowledge limits the development of novel non-invasive therapies. Our group has previously demonstrated that leiomyoma side population (SP) cells are present in tumor lesions and act like putative tumor-initiating stem cells in human leiomyoma.
View Article and Find Full Text PDFObjective: To provide a detailed summary of current scientific knowledge of somatic stem cells (SSCs) in murine and human myometrium and their putative implication in leiomyoma formation, as well as to establish new therapeutic options.
Design: Pubmed and Scholar One manuscripts were used to identify the most relevant studies on SSCs and their implications in human myometrium and leiomyomas.
Setting: University research laboratory-affiliated infertility clinic.
The existence of human endometrial somatic stem cells was proposed in the mid-20th century for the first time. This hypothesis became stronger and was revised by two authors between 1978 and 1989. Nevertheless, it was not until 2004 that scientific evidence was first published.
View Article and Find Full Text PDF