In this study, the use of a microwave reactor, which allowed high input of energy into a pressurised system in a short period of time, was investigated for preparation of lipid nanoparticles (LNPs). The aim was to optimise the formulation process by reducing manufacturing time. Two types of LNPs were prepared; non-ionic surfactant vesicles (NISV) and bilosomes (modified NISV incorporating bile salts), with a model antigen (tetanus toxoid, TT) and the immune response induced after mucosal (nasal and oral, respectively) administration was assessed.
View Article and Find Full Text PDFSilica nanoparticles (SiNPs) have been shown to have significant potential for drug delivery and as adjuvants for vaccines. We have simulated the adsorption of GnRH-I (gonadotrophin releasing hormone I) and a cysteine-tagged modification (cys-GnRH-I) to model silica surfaces, as well as its conjugation to the widely-used carrier protein bovine serum albumin (BSA). Our subsequent immunological studies revealed no significant antibody production was caused by the peptide-SiNP systems, indicating that the treatment was not effective.
View Article and Find Full Text PDFNon-ionic surfactant vesicles (NISV) are synthetic membrane vesicles formed by self-assembly of a non-ionic surfactant, often in a mixture with cholesterol and a charged chemical species. Different methods can be used to manufacture NISV, with the majority of these requiring bulk mixing of two phases. This mixing process is time-consuming and leads to the preparation of large and highly dispersed vesicles, which affects the consistency of the final product and could hinder subsequent regulatory approval.
View Article and Find Full Text PDFOverpopulation of selected groups of animals is widely recognised as an issue that can have adverse effects on several current global problems, such as animal and human health, conservation and environmental changes. This review will, therefore, focus on recent novel contraception together with future technologies that may provide additional contraceptive methods.
View Article and Find Full Text PDFUnlabelled: Vaccines administered parenterally have been developed against gonadotrophin-releasing hormone (GnRH) for anti-fertility and anti-cancer purposes. The aim of this study was to demonstrate whether mucosal delivery using GnRH immunogens entrapped in lipid nanoparticles (LNP) could induce anti-GnRH antibody titers. Immunogens consisting of KLH (keyhole limpet hemocyanin) conjugated to either GnRH-I or GnRH-III analogues were entrapped in LNP.
View Article and Find Full Text PDFDipping objectives were tested for multi-photon laser scanning microscopy, since their large working distances are advantageous for thick specimens and the absence of a coverslip facilitates examination of living material. Images of fluorescent bead specimens, particularly at wavelengths greater than 850 nm showed defects consistent with spherical aberration. Substituting methanol for water as the immersion medium surrounding the beads corrected these defects and produced an increase in fluorescence signal intensity.
View Article and Find Full Text PDFIn general, there are only a few vaccines administered via mucosal routes, as the mucosal immune system presents numerous hurdles, including diversity in mucosal surface structure, complexity in immune cell interaction and limitations in experimental methodology. This therefore necessitates a range of strategies to be used for each target area. With reference to the three main routes of delivery and associated mucosal surfaces (oral/intestinal, nasal/respiratory and female genital tract), this review examines how coadministration of immune-stimulatory molecules, adjuvants, delivery systems and mucoadhesives are used to improve mucosal vaccine efficacy.
View Article and Find Full Text PDF