The application of atom probe tomography (APT) to frozen liquids is limited by difficulties in specimen preparation. Here, we report on the use of nanoporous Cu needles as a physical framework to hold water ice for investigation using APT. Nanoporous Cu needles are prepared by electropolishing and dealloying Cu-Mn matchstick precursors.
View Article and Find Full Text PDFCryogenic atom probe tomography (cryo-APT) is being developed to enable nanoscale compositional analyses of frozen liquids. Yet, the availability of readily available substrates that allow for the fixation of liquids while providing sufficient strength to their interface is still an issue. Here, we propose the use of 1-2-µm-thick binary alloy film of gold-silver sputtered onto flat silicon, with sufficient adhesion without an additional layer.
View Article and Find Full Text PDFReliable and consistent preparation of atom probe tomography (APT) specimens from aqueous and hydrated biological specimens remains a significant challenge. One particularly difficult process step is the use of a focused ion beam (FIB) instrument for preparing the required needle-shaped specimen, typically involving a 'lift-out' procedure of a small sample of material. Here, two alternative substrate designs are introduced that enable using FIB only for sharpening, along with example APT datasets.
View Article and Find Full Text PDFRepeatable and reliable site-specific preparation of specimens for atom probe tomography (APT) at cryogenic temperatures has proven challenging. A generalized workflow is required for cryogenic specimen preparation including lift-out via focused ion beam and in situ deposition of capping layers, to strengthen specimens that will be exposed to high electric field and stresses during field evaporation in APT and protect them from environment during transfer into the atom probe. Here, we build on existing protocols and showcase preparation and analysis of a variety of metals, oxides, and supported frozen liquids and battery materials.
View Article and Find Full Text PDFMXenes are a family of 2D transition metal carbides and nitrides with remarkable properties, bearing great potential for energy storage and catalysis applications. However, their oxidation behavior is not yet fully understood, and there are still open questions regarding the spatial distribution and precise quantification of surface terminations, intercalated ions, and possible uncontrolled impurities incorporated during synthesis and processing. Here, atom probe tomography (APT) analysis of as-synthesized Ti C T MXenes reveals the presence of alkali (Li, Na) and halogen (Cl, F) elements as well as unetched Al.
View Article and Find Full Text PDFIntroduction of interstitial dopants has opened a new pathway to optimize nanoparticle catalytic activity for, e.g., hydrogen evolution/oxidation and other reactions.
View Article and Find Full Text PDFGas-solid reactions are important for many redox processes that underpin the energy and sustainability transition. The specific case of hydrogen-based iron oxide reduction is the foundation to render the global steel industry fossil-free, an essential target as iron production is the largest single industrial emitter of carbon dioxide. This perception of gas-solid reactions has not only been limited by the availability of state-of-the-art techniques which can delve into the structure and chemistry of reacted solids, but one continues to miss an important reaction partner that defines the thermodynamics and kinetics of gas phase reactions: the gas molecules.
View Article and Find Full Text PDFWhen solid-state redox-driven phase transformations are associated with mass loss, vacancies are produced that develop into pores. These pores can influence the kinetics of certain redox and phase transformation steps. We investigated the structural and chemical mechanisms in and at pores in a combined experimental-theoretical study, using the reduction of iron oxide by hydrogen as a model system.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2022
To advance the understanding of the degradation of the liquid electrolyte and Si electrode, and their interface, we exploit the latest developments in cryo-atom probe tomography. We evidence Si anode corrosion from the decomposition of the Li salt before charge-discharge cycles even begin. Volume shrinkage during delithiation leads to the development of nanograins from recrystallization in regions left amorphous by the lithiation.
View Article and Find Full Text PDFFuel cells recombine water from H and O thereby can power, for example, cars or houses with no direct carbon emission. In anion-exchange membrane fuel cells (AEMFCs), to reach high power densities, operating at high pH is an alternative to using large volumes of noble metals catalysts at the cathode, where the oxygen-reduction reaction occurs. However, the sluggish kinetics of the hydrogen-oxidation reaction (HOR) hinders upscaling despite promising catalysts.
View Article and Find Full Text PDFThe worldwide development of electric vehicles as well as large-scale or grid-scale energy storage to compensate for the intermittent nature of renewable energy generation has led to a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term, sustainable and safe operation requires detailed knowledge of their microstructure and chemistry, and their evolution under operating conditions, on the nanoscale. Atom probe tomography (APT) provides compositional mapping of materials in three dimensions with sub-nanometre resolution, and is poised to play a key role in battery research.
View Article and Find Full Text PDFNumerous metallurgical and materials science applications depend on quantitative atomic-scale characterizations of environmentally-sensitive materials and their transient states. Studying the effect upon materials subjected to thermochemical treatments in specific gaseous atmospheres is of central importance for specifically studying a material's resistance to certain oxidative or hydrogen environments. It is also important for investigating catalytic materials, direct reduction of an oxide, particular surface science reactions or nanoparticle fabrication routes.
View Article and Find Full Text PDFImaging of liquids and cryogenic biological materials by electron microscopy has been recently enabled by innovative approaches for specimen preparation and the fast development of optimized instruments for cryo-enabled electron microscopy (cryo-EM). Yet, cryo-EM typically lacks advanced analytical capabilities, in particular for light elements. With the development of protocols for frozen wet specimen preparation, atom probe tomography (APT) could advantageously complement insights gained by cryo-EM.
View Article and Find Full Text PDFMetal nanogels combine a large surface area, a high structural stability, and a high catalytic activity toward a variety of chemical reactions. Their performance is underpinned by the atomic-level distribution of their constituents, yet analyzing their subnanoscale structure and composition to guide property optimization remains extremely challenging. Here, we synthesized Pd nanogels using a conventional wet chemistry route, and a near-atomic-scale analysis reveals that impurities from the reactants (Na and K) are integrated into the grain boundaries of the poly crystalline gel, typically loci of high catalytic activity.
View Article and Find Full Text PDFCorrection for 'Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters' by Goutam Pramanik et al., Nanoscale, 2021, DOI: 10.1039/d1nr02440j.
View Article and Find Full Text PDFFluorophores functionalized with heavy elements show enhanced intersystem crossing due to increased spin-orbit coupling, which in turn shortens the fluorescence decay lifetime (τPL). This phenomenon is known as the heavy-atom effect (HAE). Here, we report the observation of increased τPL upon functionalisation of near-infrared photoluminescent gold nanoclusters with iodine.
View Article and Find Full Text PDFThis study focuses on the synthesis of FeRh nanoparticles via pulsed laser ablation in liquid and on controlling the oxidation of the synthesized nanoparticles. Formation of monomodal γ-FeRh nanoparticles was confirmed by transmission electron microscopy (TEM) and their composition confirmed by atom probe tomography (APT). For these particles, three major contributors to oxidation were analysed: (1) dissolved oxygen in the organic solvents, (2) the bound oxygen in the solvent and (3) oxygen in the atmosphere above the solvent.
View Article and Find Full Text PDF