Publications by authors named "Ayman El-Tamer"

The 3D structure of native human skin is fundamental for studying skin health, diseases, wound healing, and for testing the safety of skin care products, as well as personalized treatments for skin conditions. Tissue regeneration, driven by tissue engineering, often involves creating full-thickness skin equivalents (FSE), which are widely used for developing both healthy and diseased skin models. In this study, we utilized human skin cell lines to create FSE.

View Article and Find Full Text PDF

Neural progenitor cells generated from human induced pluripotent stem cells (hiPSCs) are the forefront of ″brain-on-chip″ investigations. Viable and functional hiPSC-derived neuronal networks are shaping powerful models for evaluating the normal and abnormal formation of cortical circuits, understanding the underlying disease mechanisms, and investigating the response to drugs. They therefore represent a desirable instrument for both the scientific community and the pharmacological industry.

View Article and Find Full Text PDF

In this paper, approaches for the realization of high-resolution periodic structures with gap sizes at sub-100 nm scale by two-photon polymerization (2PP) are presented. The impact of laser intensity on the feature sizes and surface quality is investigated. The influence of different photosensitive materials on the structure formation is compared.

View Article and Find Full Text PDF

Fabrication of three-dimensional (3D) hydrogel microenvironments with predefined geometry and porosity can facilitate important requirements in tissue engineering and regenerative medicine. Chitosan (CH) is well known as a biocompatible hydrogel with prospective biological properties for biomedical aims. So far, microstructuring of this soft material presents a great limitation for its application as functional supporting material for guided tissue formation.

View Article and Find Full Text PDF

Hydrogels are able to mimic the basic three-dimensional (3D) biological, chemical, and mechanical properties of native tissues. Since hyaluronic acid (HA) is a chief component of human extracellular matrix (ECM), it represents an extremely attractive starting material for the fabrication of scaffolds for tissue engineering. Due to poor mechanical properties of hydrogels, structure fabrication of this material class remains a major challenge.

View Article and Find Full Text PDF