Climate change has a significant impact on dissolved oxygen (DO) concentrations, particularly in coastal inlets where numerous human activities occur. Due to the various water quality (WQ), hydrological, and climatic parameters that influence this phenomenon, predicting and modeling DO variation is a challenging process. Accordingly, this study introduces an innovative Deep Learning Neural Network (DLNN) methodology to model and predict DO concentrations for the Egyptian Rashid coastal inlet, leveraging field-recorded WQ and hydroclimatic datasets.
View Article and Find Full Text PDFCs-137 is the most released fission product in the marine environment. It is important to develop a robust in situ technique for its monitoring. The existing diffusive gradients in thin films (DGT) passive sampling techniques for in situ measurement of Cs have some limitations due to the ion competition and high pH of seawater.
View Article and Find Full Text PDFA key source of information for many decision support systems is identifying land use and land cover (LULC) based on remote sensing data. Land conservation, sustainable development, and water resource management all benefit from the knowledge obtained from detecting changes in land use and land cover. The present study aims to investigate the multi-decadal coastal change detection for Ras El-Hekma and El-Dabaa area along the Mediterranean coast of Egypt, a multi-sectoral development area.
View Article and Find Full Text PDFA comprehensive dataset concerning the geochemical composition of unconsolidated shallow marine sediments collected along coastal areas of Northern Nile Delta and Egyptian sector of Red Seas is presented. The sediment samples were analyzed using instrumental neutron activation analysis (INAA) in Frank Laboratory of Neutron Physics FLNP - Joint Institute for Nuclear Research JINR and inductively coupled plasma - mass spectrometer (ICP-MS) in Actlabs - Canada. Data thus collected supported the research published and published articles conducted to evaluate the geochemistry of shallow marine sediments covering mentioned areas [1], [2], [3].
View Article and Find Full Text PDFThe present study was conducted to provide a comprehensive picture of marine sediment characterization in terms of geochemistry and the extent of pollution. A total of 99 surface coastal sediments were collected from coastal areas along with the Egyptian Mediterranean Sea. The samples were analyzed by neutron activation analysis (NAA) and the mass fractions in mg/kg of 39 trace elements were determined.
View Article and Find Full Text PDFThe Mediterranean coastal area of the Nile Delta is socio-economically vital, however, it is under significant environmental stress due to pollution from land-based activities. The study investigates the temporal variations of trace metals to assess the development of the anthropogenic pollution status in the coastal sediments. The average concentrations, the enrichment factor, and the geoaccumulation index revealed that Cr, V, Ni, and Co are pollutants of concern.
View Article and Find Full Text PDF