The development of high-energy, high-power, multi-octave light transients is currently the subject of intense research driven by emerging applications in attosecond spectroscopy and coherent control. We report on a phase-stable, multi-octave source based on a Yb:YAG amplifier for light transient generation. We demonstrate the amplification of a two-octave spectrum to 25 μJ of energy in two broadband amplification channels and their temporal compression to 6 and 18 fs at 1 and 2 μm, respectively.
View Article and Find Full Text PDFWe report on a simple scheme to generate broadband, μJ pulses centered at 2.1 μm with an intrinsic carrier-envelope phase (CEP) stability from the output of a Yb:YAG regenerative amplifier delivering 1-ps pulses with randomly varying CEP. To the best of our knowledge, the reported system has the highest optical-to-optical efficiency for converting 1-ps, 1 μm pulses to CEP stable, broadband, 2.
View Article and Find Full Text PDFThe generation of superoctave spectra from the interaction of intense ultrashort optical pulses and cubic nonlinearity is the result of interplay between the dispersion and nonlinearity of a material and various propagation effects. The cubic nonlinearity can be enhanced when it is combined with a quadratic-cascaded nonlinearity, relaxing the requirement on the laser's peak intensity for supercontinuum (SC) generation. In this Letter, we demonstrate and compare the generation of an SC driven from cubic and cascaded quadratic nonlinearities at an anomalous and zero dispersion wavelength (ZDW).
View Article and Find Full Text PDFThis is a report on a 100 W, 20 mJ, 1 ps Yb:YAG thin-disk regenerative amplifier. A homemade Yb:YAG thin-disk, Kerr-lens mode-locked oscillator with turn-key performance and microjoule-level pulse energy is used to seed the regenerative chirped-pulse amplifier. The amplifier is placed in airtight housing.
View Article and Find Full Text PDFWe report on a laser system based on thin-disk technology and chirped pulse amplification, providing output pulse energies of 200 mJ at a 5 kHz repetition rate. The amplifier contains a ring-type cavity and two thin Yb:YAG disks, each pumped by diode laser systems providing up to 3.5 kW power at a 969 nm wavelength.
View Article and Find Full Text PDFWe report on the generation of a multi-octave, phase-stable continuum from the output of a Yb:YAG regenerative amplifier delivering 1-ps pulses with randomly varying carrier-envelope phase (CEP). The intrinsically CEP-stable spectral continuum spans from 450 nm to beyond 2500 nm, covering a spectral range of about 0.6 PHz.
View Article and Find Full Text PDFWe demonstrate pulse shortening of 1-ps Yb:YAG thin-disk regenerative amplifier to 500 fs by cross-polarized wave generation (XPW) in a 6 mm BaF crystal. The process is self-compressed and has 8.5% conversion efficiency corresponding to 18 µJ energy.
View Article and Find Full Text PDFWe report a 100 W, 20 mJ, 1-ps, all-Yb:YAG thin-disk regenerative amplifier seeded by a microjoule-level Yb:YAG thin-disk Kerr-lens mode-locked oscillator. The regenerative amplifier is implemented in a chirped pulse amplification system and operates at an ambient temperature in air, delivering ultrastable output pulses at a 5 kHz repetition rate and with a root mean square power noise value of less than 0.5%.
View Article and Find Full Text PDF