A hydrogen peroxide (HO) sensor was developed based on core-shell gold@titanium dioxide nanoparticles and multi-walled carbon nanotubes modified glassy carbon electrode (Au@TiO/MWCNTs/GCE). Core-shell Au@TiO material was prepared and characterized using a scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD) and Zeta-potential analyzer. The proposed sensor (Au@TiO/MWCNTs/GCE) was investigated electrochemically using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFTwo different DNA (ERBB2c and CD24c) modified gold nanoparticles and graphene oxide loaded on glassy carbon electrodes were prepared for early detection of breast cancer markers by electrochemical detection of HER2. Comparative study of ERBB2c and CD24c for the detection was carried out. A "sandwich-type" detection strategy was employed in this electrochemical DNA biosensor and its response was measured by amperometric detection.
View Article and Find Full Text PDF