Publications by authors named "Aylwyn Scally"

Population differences in cardiometabolic disease remain unexplained. Misleading assumptions over genetic explanations are partly due to terminology used to distinguish populations, specifically ancestry, race, and ethnicity. These terms differentially implicate environmental and biological causal pathways, which should inform their use.

View Article and Find Full Text PDF

Gene duplication events can drive evolution by providing genetic material for new gene functions, and they create opportunities for diverse developmental strategies to emerge between species. To study the contribution of duplicated genes to human early development, we examined the evolution and function of NANOGP1, a tandem duplicate of the transcription factor NANOG. We found that NANOGP1 and NANOG have overlapping but distinct expression profiles, with high NANOGP1 expression restricted to early epiblast cells and naïve-state pluripotent stem cells.

View Article and Find Full Text PDF

Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes.

View Article and Find Full Text PDF

Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions.

View Article and Find Full Text PDF

Background: Integrating demography and adaptive evolution is pivotal to understanding the evolutionary history and conservation of great apes. However, little is known about the adaptive evolution of our closest relatives, in particular if and to what extent adaptions to environmental differences have occurred. Here, we used whole-genome sequencing data from critically endangered orangutans from North Sumatra (Pongo abelii) and Borneo (P.

View Article and Find Full Text PDF

Human populations outside of Africa have experienced at least two bouts of introgression from archaic humans, from Neanderthals and Denisovans. In Papuans there is prior evidence of both these introgressions. Here we present a new approach to detect segments of individual genomes of archaic origin without using an archaic reference genome.

View Article and Find Full Text PDF

We challenge the view that our species, Homo sapiens, evolved within a single population and/or region of Africa. The chronology and physical diversity of Pleistocene human fossils suggest that morphologically varied populations pertaining to the H. sapiens clade lived throughout Africa.

View Article and Find Full Text PDF

Little is known regarding the first people to enter the Americas and their genetic legacy. Genomic analysis of the oldest human remains from the Americas showed a direct relationship between a Clovis-related ancestral population and all modern Central and South Americans as well as a deep split separating them from North Americans in Canada. We present 91 ancient human genomes from California and Southwestern Ontario and demonstrate the existence of two distinct ancestries in North America, which possibly split south of the ice sheets.

View Article and Find Full Text PDF

Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1].

View Article and Find Full Text PDF

Heterozygous mutations within homozygous sequences descended from a recent common ancestor offer a way to ascertain de novo mutations across multiple generations. Using exome sequences from 3222 British-Pakistani individuals with high parental relatedness, we estimate a mutation rate of 1.45 ± 0.

View Article and Find Full Text PDF

An analysis of worldwide human genetic variation reveals the footprints of ancient changes in genomic mutation processes.

View Article and Find Full Text PDF

The rate of germline mutation varies widely between species but little is known about the extent of variation in the germline mutation rate between individuals of the same species. Here we demonstrate that an allele that increases the rate of germline mutation can result in a distinctive signature in the genomic region linked to the affected locus, characterized by a number of haplotypes with a locally high proportion of derived alleles, against a background of haplotypes carrying a typical proportion of derived alleles. We searched for this signature in human haplotype data from phase 3 of the 1000 Genomes Project and report a number of candidate mutator loci, several of which are located close to or within genes involved in DNA repair or the DNA damage response.

View Article and Find Full Text PDF

Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor of geographic origin at country and regional scales.

View Article and Find Full Text PDF

The germline mutation rate has long been a major source of uncertainty in human evolutionary and demographic analyses based on genetic data, but estimates have improved substantially in recent years. I discuss our current knowledge of the mutation rate in humans and the underlying biological factors affecting it, which include generation time, parental age and other developmental and reproductive timescales. There is good evidence for a slowdown in mean mutation rate during great ape evolution, but not for a more recent change within the timescale of human genetic diversity.

View Article and Find Full Text PDF
Mutation rates and the evolution of germline structure.

Philos Trans R Soc Lond B Biol Sci

July 2016

Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline.

View Article and Find Full Text PDF

Unlabelled: Runs of homozygosity (RoHs) are genomic stretches of a diploid genome that show identical alleles on both chromosomes. Longer RoHs are unlikely to have arisen by chance but are likely to denote autozygosity, whereby both copies of the genome descend from the same recent ancestor. Early tools to detect RoH used genotype array data, but substantially more information is available from sequencing data.

View Article and Find Full Text PDF

Current fossil, genetic, and archeological data indicate that Homo sapiens originated in Africa in the late Middle Pleistocene. By the end of the Late Pleistocene, our species was distributed across every continent except Antarctica, setting the foundations for the subsequent demographic and cultural changes of the Holocene. The intervening processes remain intensely debated and a key theme in hominin evolutionary studies.

View Article and Find Full Text PDF

The predominantly African origin of all modern human populations is well established, but the route taken out of Africa is still unclear. Two alternative routes, via Egypt and Sinai or across the Bab el Mandeb strait into Arabia, have traditionally been proposed as feasible gateways in light of geographic, paleoclimatic, archaeological, and genetic evidence. Distinguishing among these alternatives has been difficult.

View Article and Find Full Text PDF

Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation.

View Article and Find Full Text PDF

All non-human great apes are endangered in the wild, and it is therefore important to gain an understanding of their demography and genetic diversity. Whole genome assembly projects have provided an invaluable foundation for understanding genetics in all four genera, but to date genetic studies of multiple individuals within great ape species have largely been confined to mitochondrial DNA and a small number of other loci. Here, we present a genome-wide survey of genetic variation in gorillas using a reduced representation sequencing approach, focusing on the two lowland subspecies.

View Article and Find Full Text PDF

We present a hidden Markov model (HMM) for inferring gradual isolation between two populations during speciation, modelled as a time interval with restricted gene flow. The HMM describes the history of adjacent nucleotides in two genomic sequences, such that the nucleotides can be separated by recombination, can migrate between populations, or can coalesce at variable time points, all dependent on the parameters of the model, which are the effective population sizes, splitting times, recombination rate, and migration rate. We show by extensive simulations that the HMM can accurately infer all parameters except the recombination rate, which is biased downwards.

View Article and Find Full Text PDF