Publications by authors named "Aylwin Ng"

The gastrointestinal tract represents one of the largest body surfaces that is exposed to the outside world. It is the only mucosal surface that is required to simultaneously recognize and defend against pathogens, while allowing nutrients containing foreign antigens to be tolerated and absorbed. It differentiates between these foreign substances through a complex system of pattern recognition receptors expressed on the surface of the intestinal epithelial cells as well as the underlying immune cells.

View Article and Find Full Text PDF

Adaptive changes in lysosomal capacity are driven by the transcription factors TFEB and TFE3 in response to increased autophagic flux and endolysosomal stress, yet the molecular details of their activation are unclear. LC3 and GABARAP members of the ATG8 protein family are required for selective autophagy and sensing perturbation within the endolysosomal system. Here, we show that during the conjugation of ATG8 to single membranes (CASM), Parkin-dependent mitophagy, and -induced xenophagy, the membrane conjugation of GABARAP, but not LC3, is required for activation of TFEB/TFE3 to control lysosomal capacity.

View Article and Find Full Text PDF

Genome-wide association studies have identified common genetic variants impacting human diseases; however, there are indications that the functional consequences of genetic polymorphisms can be distinct depending on cell type-specific contexts, which produce divergent phenotypic outcomes. Thus, the functional impact of genetic variation and the underlying mechanisms of disease risk are modified by cell type-specific effects of genotype on pathological phenotypes. In this study, we extend these concepts to interrogate the interdependence of cell type- and stimulation-specific programs influenced by the core autophagy gene and its T300A coding polymorphism identified by genome-wide association studies as linked with increased risk of Crohn's disease.

View Article and Find Full Text PDF

Intestinal reovirus infection can trigger T helper 1 (T1) immunity to dietary antigen, raising the question of whether other viruses can have a similar impact. Here we show that the acute CW3 strain of murine norovirus, but not the persistent CR6 strain, induces T1 immunity to dietary antigen. This property of CW3 is dependent on its major capsid protein, a virulence determinant.

View Article and Find Full Text PDF

Phagocyte microbiocidal mechanisms and inflammatory cytokine production are temporally coordinated, although their respective interdependencies remain incompletely understood. Here, we identify a nitric-oxide-mediated antioxidant response as a negative feedback regulator of inflammatory cytokine production in phagocytes. In this context, Keap1 functions as a cellular redox sensor that responds to elevated reactive nitrogen intermediates by eliciting an adaptive transcriptional program controlled by Nrf2 and comprised of antioxidant genes, including Prdx5.

View Article and Find Full Text PDF

Optimal regulation of the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is essential for controlling bacterial infections and inflammatory disorders. Chronic NOD2 stimulation induces non-responsiveness to restimulation, termed NOD2-induced tolerance. Although the levels of the NOD2 adaptor, RIP2, are reported to regulate both acute and chronic NOD2 signalling, how RIP2 levels are modulated is unclear.

View Article and Find Full Text PDF

Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (T1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pT) conversion and promoting T1 immunity to dietary antigen.

View Article and Find Full Text PDF

Significant insights into disease pathogenesis have been gleaned from population-level genetic studies; however, many loci associated with complex genetic disease contain numerous genes, and phenotypic associations cannot be assigned unequivocally. In particular, a gene-dense locus on chromosome 11 (61.5-61.

View Article and Find Full Text PDF

Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma.

View Article and Find Full Text PDF

SQSTM1 is an adaptor protein that integrates multiple cellular signaling pathways and whose expression is tightly regulated at the transcriptional and post-translational level. Here, we describe a forward genetic screening paradigm exploiting CRISPR-mediated genome editing coupled to a cell selection step by FACS to identify regulators of SQSTM1. Through systematic comparison of pooled libraries, we show that CRISPR is superior to RNAi in identifying known SQSTM1 modulators.

View Article and Find Full Text PDF

The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1.

View Article and Find Full Text PDF

CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling.

View Article and Find Full Text PDF

Many host-factors are inducibly expressed during the development of inflammatory bowel disease (IBD), each having their unique properties, such as immune activation, bacterial clearance, and tissue repair/remodeling. Dysregulation/imbalance of these factors may have pathogenic effects that can contribute to colitis-associated cancer (CAC). Previous reports showed that IBD patients inducibly express colonic chitinase 3-like 1 (CHI3L1) that is further upregulated during CAC development.

View Article and Find Full Text PDF

The phagocyte oxidative burst, mediated by Nox2 NADPH oxidase-derived reactive oxygen species, confers host defense against a broad spectrum of bacterial and fungal pathogens. Loss-of-function mutations that impair function of the Nox2 complex result in a life-threatening immunodeficiency, and genetic variants of Nox2 subunits have been implicated in pathogenesis of inflammatory bowel disease (IBD). Thus, alterations in the oxidative burst can profoundly impact host defense, yet little is known about regulatory mechanisms that fine-tune this response.

View Article and Find Full Text PDF

The polymorphism ATG16L1 T300A, associated with increased risk of Crohn's disease, impairs pathogen defense mechanisms including selective autophagy, but specific pathway interactions altered by the risk allele remain unknown. Here, we use perturbational profiling of human peripheral blood cells to reveal that CLEC12A is regulated in an ATG16L1-T300A-dependent manner. Antibacterial autophagy is impaired in CLEC12A-deficient cells, and this effect is exacerbated in the presence of the ATG16L1(∗)300A risk allele.

View Article and Find Full Text PDF

The induction of host defense against Candida species is initiated by recognition of the fungi by pattern recognition receptors and activation of downstream pathways that produce inflammatory mediators essential for infection clearance. In this study, we present complementary evidence based on transcriptome analysis, genetics, and immunological studies in knockout mice and humans that the cytosolic RIG-I-like receptor MDA5 (IFIH1) has an important role in the host defense against C. albicans.

View Article and Find Full Text PDF

RNAi screens have implicated hundreds of host proteins as HIV-1 dependency factors (HDFs). While informative, these early studies overlap poorly due to false positives and false negatives. To ameliorate these issues, we combined information from the existing HDF screens together with new screens performed with multiple orthologous RNAi reagents (MORR).

View Article and Find Full Text PDF

The anti-tuberculosis-vaccine Bacillus Calmette-Guérin (BCG) is the most widely used vaccine in the world. In addition to its effects against tuberculosis, BCG vaccination also induces non-specific beneficial effects against certain forms of malignancy and against infections with unrelated pathogens. It has been recently proposed that the non-specific effects of BCG are mediated through epigenetic reprogramming of monocytes, a process called trained immunity.

View Article and Find Full Text PDF

Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naïve, tolerized, and trained macrophages.

View Article and Find Full Text PDF

Epigenetic reprogramming of myeloid cells, also known as trained immunity, confers nonspecific protection from secondary infections. Using histone modification profiles of human monocytes trained with the Candida albicans cell wall constituent β-glucan, together with a genome-wide transcriptome, we identified the induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, high lactate production, and a high ratio of nicotinamide adenine dinucleotide (NAD(+)) to its reduced form (NADH), reflecting a shift in metabolism with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1-Akt-HIF-1α (hypoxia-inducible factor-1α) pathway.

View Article and Find Full Text PDF
Article Synopsis
  • - Most diseases are influenced by a mix of genetic and environmental factors, and while genome-wide association studies (GWAS) have pinpointed many genetic variants linked to these diseases, they often fail to show how these variants lead to disease through biological processes.
  • - Advances in ~omics techniques allow researchers to study how these genetic variants impact molecular levels like gene expression and protein production, but understanding complex diseases requires looking at multiple molecular factors together.
  • - Systems genetics is a promising approach that integrates genetic data with various ~omics datasets and environmental variables to better understand the causal relationships from genetic variation to disease, helping researchers unravel the underlying molecular mechanisms involved.
View Article and Find Full Text PDF

Genetic analyses indicate that autophagy, an evolutionarily conserved lysosomal degradation pathway, is essential for eukaryotic differentiation and development. However, little is known about whether autophagy contributes to morphogenesis during embryogenesis. To address this question, we examined the role of autophagy in the early development of zebrafish, a model organism for studying vertebrate tissue and organ morphogenesis.

View Article and Find Full Text PDF

Candida albicans is the most common human fungal pathogen causing mucosal and systemic infections. However, human antifungal immunity remains poorly defined. Here by integrating transcriptional analysis and functional genomics, we identified Candida-specific host defence mechanisms in humans.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7q0lol991m6jqjt2dltn92kivf7rd70n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once