Publications by authors named "Aylon Y"

Downregulation of the urea cycle enzyme argininosuccinate synthase (ASS1) in multiple tumors is associated with a poor prognosis partly because of the metabolic diversion of cytosolic aspartate for pyrimidine synthesis, supporting proliferation and mutagenesis owing to nucleotide imbalance. Here, we find that prolonged loss of ASS1 promotes DNA damage in colon cancer cells and fibroblasts from subjects with citrullinemia type I. Following acute induction of DNA damage with doxorubicin, ASS1 expression is elevated in the cytosol and the nucleus with at least a partial dependency on p53; ASS1 metabolically restrains cell cycle progression in the cytosol by restricting nucleotide synthesis.

View Article and Find Full Text PDF

High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells.

View Article and Find Full Text PDF

The gene is mutated in approximately 30% of all breast cancer cases. Adipocytes and preadipocytes, which constitute a substantial fraction of the stroma of normal mammary tissue and breast tumors, undergo transcriptional, metabolic, and phenotypic reprogramming during breast cancer development and play an important role in tumor progression. We report here that p53 loss in breast cancer cells facilitates the reprogramming of preadipocytes, inducing them to acquire a unique transcriptional and metabolic program that combines impaired adipocytic differentiation with augmented cytokine expression.

View Article and Find Full Text PDF

The core Hippo pathway module consists of a tumour-suppressive kinase cascade that inhibits the transcriptional coactivators Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1; also known as TAZ). When the Hippo pathway is downregulated, as often occurs in breast cancer, YAP/TAZ activity is induced. To elaborate the roles of TAZ in triple-negative breast cancer (TNBC), we depleted Taz in murine TNBC 4T1 cells, using either CRISPR/Cas9 or small hairpin RNA (shRNA).

View Article and Find Full Text PDF

Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity.

View Article and Find Full Text PDF

The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations.

View Article and Find Full Text PDF

Missense mutations in the p53 tumor suppressor abound in human cancer. Common (“hotspot”) mutations endow mutant p53 (mutp53) proteins with oncogenic gain of function (GOF), including enhanced cell migration and invasiveness, favoring cancer progression. GOF is usually attributed to transcriptional effects of mutp53.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer-related deaths worldwide. The paralogous transcriptional cofactors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ, also called WWTR1), the main downstream effectors of the Hippo signal transduction pathway, are emerging as pivotal determinants of malignancy in lung cancer. Traditionally, studies have tended to consider YAP and TAZ as functionally redundant transcriptional cofactors with similar biological impact.

View Article and Find Full Text PDF

TP53 gene mutations are very common in human cancer. While such mutations abrogate the tumor suppressive activities of the wild-type (wt) p53 protein, some of them also endow the mutant (mut) protein with oncogenic gain of function (GOF), facilitating cancer progression. Yet, p53 may acquire altered functionality even without being mutated; in particular, experiments with cultured cells revealed that wtp53 can be rewired to adopt mut-like features in response to growth factors or cancer-mimicking genetic manipulations.

View Article and Find Full Text PDF

Deregulated activity of LArge Tumor Suppressor (LATS) tumor suppressors has broad implications on cellular and tissue homeostasis. We examined the consequences of down-regulation of either LATS1 or LATS2 in breast cancer. Consistent with their proposed tumor suppressive roles, expression of both paralogs was significantly down-regulated in human breast cancer, and loss of either paralog accelerated mammary tumorigenesis in mice.

View Article and Find Full Text PDF

Tumors accumulate high levels of mutant p53 (mutp53), which contributes to mutp53 gain-of-function properties. The mechanisms that underlie such excessive accumulation are not fully understood. To discover regulators of mutp53 protein accumulation, we performed a large-scale RNA interference screen in a Burkitt lymphoma cell line model.

View Article and Find Full Text PDF

In this issue of Cancer Cell, Mello et al. investigated how p53 suppresses pancreatic cancer and discovered a key role for the tyrosine phosphatase PTPN14, a p53 transcriptional target. PTPN14 restrains YAP, curbing its potential oncogenic effects.

View Article and Find Full Text PDF
p53 shades of Hippo.

Cell Death Differ

January 2018

The three p53 family members, p53, p63 and p73, are structurally similar and share many biochemical activities. Yet, along with their common fundamental role in protecting genomic fidelity, each has acquired distinct functions related to diverse cell autonomous and non-autonomous processes. Similar to the p53 family, the Hippo signaling pathway impacts a multitude of cellular processes, spanning from cell cycle and metabolism to development and tumor suppression.

View Article and Find Full Text PDF

Proper cellular functionality and homeostasis are maintained by the convergent integration of various signaling cascades, which enable cells to respond to internal and external changes. The Dbf2-related kinases LATS1 and LATS2 (LATS) have emerged as central regulators of cell fate, by modulating the functions of numerous oncogenic or tumor suppressive effectors, including the canonical Hippo effectors YAP/TAZ, the Aurora mitotic kinase family, estrogen signaling and the tumor suppressive transcription factor p53. While the basic functions of the LATS kinase module are strongly conserved over evolution, the genomic duplication event leading to the emergence of two closely related kinases in higher organisms has increased the complexity of this signaling network.

View Article and Find Full Text PDF

DNA methylation is a key regulator of embryonic stem cell (ESC) biology, dynamically changing between naïve, primed, and differentiated states. The p53 tumor suppressor is a pivotal guardian of genomic stability, but its contributions to epigenetic regulation and stem cell biology are less explored. We report that, in naïve mouse ESCs (mESCs), p53 restricts the expression of the de novo DNA methyltransferases Dnmt3a and Dnmt3b while up-regulating Tet1 and Tet2, which promote DNA demethylation.

View Article and Find Full Text PDF

ASBTRACT Increased rates of cholesterol and lipid synthesis have long been recognized as important aspects of the metabolic rewiring that occurs during cancerous transformation. Many genes encoding enzymes involved in cholesterol and fatty acid biogenesis are transcriptional targets of the sterol regulatory element-binding proteins (SREBPs). The SREBPs act as a hub for metabolic and proliferation-related signals; their activity is the focus of a tug-of-war between tumor suppressors, who generally inhibit SREBP function, and oncogenes, who often promote, and rely on, SREBP activity.

View Article and Find Full Text PDF
The Paradox of p53: What, How, and Why?

Cold Spring Harb Perspect Med

October 2016

Unlike the rather stereotypic image by which it was portrayed until not too many years ago, p53 is now increasingly emerging as a multifaceted transcription factor that can sometimes exert opposing effects on biological processes. This includes pro-survival activities that seem to contradict p53's canonical proapoptotic features, as well as opposing effects on cell migration, metabolism, and differentiation. Such antagonistic bifunctionality (balancing both positive and negative signals) bestows p53 with an ideal attribute to govern homeostasis.

View Article and Find Full Text PDF

The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway.

View Article and Find Full Text PDF
Article Synopsis
  • p53 is a crucial tumor suppressor that helps prevent cancer, but changes in its activation can lead to cancer progression.
  • Silencing the Hippo pathway suppressors LATS1 and LATS2 in healthy mammary cells decreases p53 phosphorylation and alters its behavior, mimicking cancer-associated variants.
  • The decrease of LATS1 and LATS2 is common in breast cancer, suggesting that their loss may help turn p53 from a tumor-fighting protein into one that actually aids cancer growth.
View Article and Find Full Text PDF

MicroRNAs (miRs) regulate a variety of cellular processes, and their impaired expression is involved in cancer. Silencing of tumor-suppressive miRs in cancer can occur through epigenetic modifications, including DNA methylation and histone deacetylation. We performed comparative miR profiling on cultured lung cancer cells before and after treatment with 5'aza-deoxycytidine plus Trichostatin A to reverse DNA methylation and histone deacetylation, respectively.

View Article and Find Full Text PDF

Differentiation is a highly controlled process essential for embryonic and adult development. Moreover, disruption of proper differentiation is often associated with human diseases, including cancer. We analyzed the involvement of the tumor-suppressor Lats2 in mouse embryonic stem cell (mESC) pluripotency and differentiation, and report that mESCs lacking Lats2 are unable to sustain stemness and are not able to initiate and coordinate developmental transcriptional programs.

View Article and Find Full Text PDF