Three-dimensional (3D) printing technology enables the design of personalized scaffolds with tunable pore size and composition. Combining decellularization and 3D printing techniques provides the opportunity to fabricate scaffolds with high potential to mimic native tissue. The aim of this study is to produce novel decellularized bone extracellular matrix (dbECM)-reinforced composite-scaffold that can be used as a biomaterial for bone tissue engineering.
View Article and Find Full Text PDFThe main goal of the study was to produce chitosan-collagen hydrogel composite scaffolds consisting of 3D printed poly(lactic acid) (PLA) strut and nanofibrous cellulose for meniscus cartilage tissue engineering. For this purpose, first PLA strut containing microchannels was incorporated into cellulose nanofibers and then they were embedded into chitosan-collagen matrix to obtain micro- and nano-sized topographical features for better cellular activities as well as mechanical properties. All the hydrogel composite scaffolds produced by using three different concentrations of genipin (0.
View Article and Find Full Text PDFTissue engineering approaches which include a combination of cells and scaffold materials provide an alternative treatment for meniscus regeneration. Decellularization and recellularization techniques are potential treatment options for transplantation. Maintenance of the ultrastructure composition of the extracellular matrix and repopulation with cells are important factors in constructing a biological scaffold and eliminating immunological reactions.
View Article and Find Full Text PDFRecently, biologically active natural macromolecules have come into prominence to be used as potential materials in scaffold design due to their unique characteristics which can mimic the human tissue structure with their physical and chemical similarity. Among them, fish scale (FS) is a biologically active material with its structural similarity to bone tissue due to including type I collagen and hydroxyapatite and also have distinctive collagen arrangement. In the present study, it is aimed to design a novel composite scaffold with FS incorporation into chitosan (CH) matrix for bone tissue regeneration.
View Article and Find Full Text PDFObjectives: This study aims to evaluate the effects of anchor positions on the suture holding strength of a double-row knotless fixation in rotator cuff repair.
Materials And Methods: Four different double-row fixation techniques were assessed. In group 1, a 15-mm-wide mattress suture was fixed using a knotless lateral row anchor, horizontal to the shaft.