Publications by authors named "Ayla Norris"

Sugar metabolism not only determines fruit sweetness and quality but also acts as signaling molecules to substantially connect with other primary metabolic processes and, therefore, modulates plant growth and development, fruit ripening, and stress response. The basic region/leucine zipper motif (bZIP) transcription factor family is ubiquitous in eukaryotes and plays a diverse array of biological functions in plants. Among the bZIP family members, the smallest bZIP subgroup, S1-bZIP, is a unique one, due to the conserved upstream open reading frames (uORFs) in the 5' leader region of their mRNA.

View Article and Find Full Text PDF

Distinct catalytic features of the Poaceae TPS-a subfamily arose early in grass evolution and the reactions catalyzed have become more complex with time. The structural diversity of terpenes found in nature is mainly determined by terpene synthases (TPS). TPS enzymes accept ubiquitous prenyl diphosphates as substrates and convert them into the various terpene skeletons by catalyzing a carbocation-driven reaction.

View Article and Find Full Text PDF

Ethylene-responsive element binding factors (ERFs) are involved in regulation of various stress responses in plants, but their biological functions in waterlogging stress are largely unclear. In this study, we identified a petunia ( × ) ERF gene, , that was significantly induced by waterlogging in wild-type (WT). To study the regulatory role of in waterlogging responses, transgenic petunia plants with RNAi silencing and overexpression of were generated.

View Article and Find Full Text PDF

Terpenes are structurally diverse natural products involved in many ecological interactions. The pivotal enzymes for terpene biosynthesis, terpene synthases (TPSs), had been described only in plants and fungi in the eukaryotic domain. In this report, we systematically analyzed the genome sequences of a broad range of nonplant/nonfungus eukaryotes and identified putative TPS genes in six species of amoebae, five of which are multicellular social amoebae from the order of Dictyosteliida.

View Article and Find Full Text PDF

Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described.

View Article and Find Full Text PDF

Sumoylation is a posttranslational regulatory process in higher eukaryotes modifying substrate proteins through conjugation of small ubiquitin-related modifiers (SUMOs). Sumoylation modulates protein stability, subcellular localization and activity; thus, it regulates most cellular functions including response to environmental stress in plants. To study the feasibility of manipulating SUMO E3 ligase, one of the important components in the sumoylation pathway in transgenic (TG) crop plants for improving overall plant performance under adverse environmental conditions, we have analysed TG creeping bentgrass (Agrostis stolonifera L.

View Article and Find Full Text PDF