IEEE Trans Image Process
March 2024
Event-based cameras are becoming increasingly popular for their ability to capture high-speed motion with low latency and high dynamic range. However, generating videos from events remains challenging due to the highly sparse and varying nature of event data. To address this, in this study, we propose HyperE2VID, a dynamic neural network architecture for event-based video reconstruction.
View Article and Find Full Text PDFThe article emphasizes the critical importance of language generation today, particularly focusing on three key aspects: Multitasking, Multilinguality, and Multimodality, which are pivotal for the Natural Language Generation community. It delves into the activities conducted within the Multi3Generation COST Action (CA18231) and discusses current trends and future perspectives in language generation.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2021
Capturing images under extremely low-light conditions poses significant challenges for the standard camera pipeline. Images become too dark and too noisy, which makes traditional enhancement techniques almost impossible to apply. Recently, learning-based approaches have shown very promising results for this task since they have substantially more expressive capabilities to allow for improved quality.
View Article and Find Full Text PDFMulti-contrast MRI protocols increase the level of morphological information available for diagnosis. Yet, the number and quality of contrasts are limited in practice by various factors including scan time and patient motion. Synthesis of missing or corrupted contrasts from other high-quality ones can alleviate this limitation.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2019
Acquiring images of the same anatomy with multiple different contrasts increases the diversity of diagnostic information available in an MR exam. Yet, the scan time limitations may prohibit the acquisition of certain contrasts, and some contrasts may be corrupted by noise and artifacts. In such cases, the ability to synthesize unacquired or corrupted contrasts can improve diagnostic utility.
View Article and Find Full Text PDFIn this paper, we present a new sampling-based alpha matting approach for the accurate estimation of foreground and background layers of an image. Previous sampling-based methods typically rely on certain heuristics in collecting representative samples from known regions, and thus their performance deteriorates if the underlying assumptions are not satisfied. To alleviate this, we take an entirely new approach and formulate sampling as a sparse subset selection problem where we propose to pick a small set of candidate samples that best explains the unknown pixels.
View Article and Find Full Text PDFTo detect visually salient elements of complex natural scenes, computational bottom-up saliency models commonly examine several feature channels such as color and orientation in parallel. They compute a separate feature map for each channel and then linearly combine these maps to produce a master saliency map. However, only a few studies have investigated how different feature dimensions contribute to the overall visual saliency.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2008
We present a new skeletal representation along with a matching framework to address the deformable shape recognition problem. The disconnectedness arises as a result of excessive regularization that we use to describe a shape at an attainably coarse scale. Our motivation is to rely on stable properties the shape instead of inaccurately measured secondary details.
View Article and Find Full Text PDF