Red blood cells (RBCs) from sickle cell patients exposed to a low oxygen tension reveal highly heterogeneous cell morphologies due to the polymerization of sickle hemoglobin (HbS). We show that angle-resolved light scattering approach with the use of image-based flow cytometry provides reliable quantitative data to define the change in morphology of large populations of RBCs from sickle cell patients when the cells are exposed for different times to low oxygen. We characterize the RBC morphological profile by means of a set of morphological and physical parameters, which includes cell shape, size, and orientation.
View Article and Find Full Text PDFWe present experimental investigation of light-controlled photonics-enhanced quasi-optical mm-wave beam switch operating at a resonant frequency in the mm-wave band of 75 to 110 GHz. The switch is implemented as a Bragg structure with a resonant layer of high-resistivity silicon that creates a narrow transmission peak within the mm-wave propagation gap. The peak amplitude is sensitive to the intensity of light pulses illuminating the structure.
View Article and Find Full Text PDFIn this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level.
View Article and Find Full Text PDFWe report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve.
View Article and Find Full Text PDFEssential oils obtained by hydrodistillation (HD) and microwave-assisted HD (MWHD) of Origanum onites aerial parts were analyzed by GC and GCIMS. Thirty-one constituents representing 98.6% of the water-distilled oil and 52 constituents representing 99.
View Article and Find Full Text PDFWe propose and demonstrate a wireless, passive, metamaterial-based sensor that allows for remotely monitoring submicron displacements over millimeter ranges. The sensor comprises a probe made of multiple nested split ring resonators (NSRRs) in a double-comb architecture coupled to an external antenna in its near-field. In operation, the sensor detects displacement of a structure onto which the NSRR probe is attached by telemetrically tracking the shift in its local frequency peaks.
View Article and Find Full Text PDFThis study investigated the effect of Urtica dioica, known as stinging nettle, seed oil (UDO) treatment on colonic tissue and blood parameters of trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. Experimental colitis was induced with 1 mL of TNBS in 40% ethanol by intracolonic administration with a 8-cm-long cannula with rats under ether anesthesia, assigned to a colitis group and a colitis+UDO group. Rats in the control group were given saline at the same volume by intracolonic administration.
View Article and Find Full Text PDFWe study the lasing eigenvalue problems for a periodic open optical resonator made of an infinite grating of circular dielectric cylinders standing in free space, in the E- and H-polarization modes. If possessing a "negative-absorption" refractive index, such cylinders model a chain of quantum wires made of the gain material under pumping. The initial-guess values for the lasing frequencies are provided by the plane-wave scattering problems.
View Article and Find Full Text PDFA two-dimensional reflector with resistive-type boundary conditions and varying resistivity is considered. The incident wave is a beam emitted by a complex-source-point feed simulating an aperture source. The problem is formulated as an electromagnetic time-harmonic boundary value problem and cast into the electric field integral equation form.
View Article and Find Full Text PDFWe propose an advanced physical optics formulation for the accurate modeling of dielectric lenses used in quasi-optical systems of millimeter, submillimeter, and infrared wave applications. For comparison, we obtain an exact full-wave solution of a two-dimensional lens problem and use it as a benchmark for testing and validation of asymptotic models being considered.
View Article and Find Full Text PDFConsidered is the beam wave guidance and scattering by 2D quasi-optical reflectors modeling the components of beam waveguides. The incident field is taken as the complex-source-point field to simulate a finite-width beam generated by a small-aperture source. A numerical solution is obtained from the coupled singular integral equations (SIEs) for the surface currents on reflectors, discretized by using the recently introduced Nystrom-type quadrature formulas.
View Article and Find Full Text PDFThe upper bounds of the signal-to-noise ratio (also known as the "ultimate intrinsic signal-to-noise ratio" (UISNR)) for internal and external coils were calculated. In the calculation, the body was modeled as a dielectric cylinder with a small coaxial cylindrical cavity in which internal coils could be placed. The calculated UISNR values can be used as reference solutions to evaluate the performance of internal MRI coils.
View Article and Find Full Text PDF