Objectives: Previous studies have shown that gene expressions can be regulated in the hippocampus of rats after seizures induced by kainic acid (KA). The aim of this study was to examine the potential regulatory impact of KA administration on gene expression levels of enzymes responsible for drug metabolism in rat hippocampal tissue.
Materials And Methods: Rats received intraperitoneal injections of KA and saline at a dose of 10 mg/kg.
The neurodegenerative mechanisms of Alzheimer's disease (AD) are not fully understood, but it is believed that amyloid beta (Aβ) peptide causes oxidative stress, neuroinflammation, and disrupts metabotropic glutamate receptor 5 (mGluR5) signaling by interacting with cholesterol and caveolin-1 (Cav-1) in pathogenic lipid rafts. This study examined the effect of 2-hydroxypropyl-β-cyclodextrin (HP-CD) on cholesterol, oxidative stress (total oxidant status), neuroinflammation (TNF-α), and mGluR5 signaling molecules such as PKCβ1, PKCβ2, ERK1/2, CREB, BDNF, and NGF in Aβ (1-42)-induced neurotoxicity. The Sprague-Dawley rats were divided into four groups: control (saline), Aβ (1-42), HP-CD (100 mg/kg), and Aβ (1-42) + HP-CD (100 mg/kg).
View Article and Find Full Text PDFAntithrombotic agents and anticoagulant drugs, such as those from the heparin family, are employed in clinical settings for the prevention and treatment of clotting, thromboembolism, and wound healing. The potency assessment of antithrombotic agents is typically conducted using antifactor IIa assay with manual systems which are time-consuming and often lack repeatability. Here, we present a novel automated system that significantly enhances assay repeatability, attaining an outstandingly low relative standard deviation (RSD) % of only 0.
View Article and Find Full Text PDFβ-Amyloid (Aβ) plaques are the key neurotoxic assemblies in Alzheimer disease. It has been suggested that an interaction occurs between membrane cholesterol and Aβ aggregation in the brain. Cyclodextrins can remove cholesterol from cell membranes and change receptor function.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
December 2015
Oxidative stress is a major brain injury mechanism after ischemic stroke. 12/15-lipoxygenase (12/15-LOX) is a key mediator of oxidative stress, contributing to neuronal cell death and vascular leakage. Nonetheless, the mechanism leading to its upregulation is currently unknown.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles, along with synaptic loss. The underlying mechanisms of AD are not clarified yet, but oxidative stress and mitochondrial dysfunction are important factors. Overactivation of poly(adenosine diphosphate ribose) polymerase-1 (PARP-1) enzyme has been known to cause neuroinflammation and cell death in neurodegenerative processes.
View Article and Find Full Text PDFComb Chem High Throughput Screen
November 2013
Glutathione (GSH) is a major endogenous antioxidant highly active in human tissues and plays a key role in controlling cellular thiol redox system, maintaining the immune and detoxification system. The determination of GSH levels in tissue is important to estimate endogenous defenses against oxidative stress. In our study, the multi-walled carbon nanotube modified screen-printed electrodes (MWCNT-SPEs) were used to determine the levels of GSH in trichloroacetic acid (TCA)-treated or untreated samples of rat plasma.
View Article and Find Full Text PDFGiven the fundamentally multifactorial character of Alzheimer's disease (AD), addressing more than one target for disease modification or therapy is expected to be highly advantageous. Here, following the cholinergic hypothesis, we aimed to inhibit both acetyl- and butyrylcholinesterase (AChE and BuChE) in order to increase the concentration of acetylcholine in the synaptic cleft. In addition, the formation of the amyloid β fibrils should be inhibited and already preformed fibrils should be destroyed.
View Article and Find Full Text PDFResveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antioxidant effects of resveratrol against hydrogen peroxide in embryonic neural stem cells. Hydrogen peroxide treatment alone increased catalase and glutathione peroxidase activities but did not change superoxide dismutase levels compared with hydrogen peroxide + resveratrol treatment.
View Article and Find Full Text PDFThe opioid/nociceptin receptors are involved in many neurological disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. Kainic acid (KA) is an analog of the excitatory amino acid transmitter glutamate and the systemic administration of KA induces status epilepticus (SE) in rodents. In this study, we examined the alterations in the G-protein activity and the gene expression levels of mu, kappa, delta opioid and nociceptin receptors (MOPr, KOPr, DOPr and NOPr) as well as PNOC, the precursor polypeptide of nociceptin-OFQ (N/OFQ) in KA-induced seizures in the rat brain cortex.
View Article and Find Full Text PDFDrug Chem Toxicol
October 2012
Inflammation is deleterious for organs with reduced capacity of regeneration, such as the brain. Recently, studies have focused on investigating the therapeutic effects of nonsteroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. Excitotoxicity is the pathological process when receptors for the excitatory neurotransmitter glutamate, such as the N-methyl-D-aspartate (NMDA), receptors are overactivated.
View Article and Find Full Text PDFExcitotoxicity is a contributing factor to the pathogenesis of acute or chronic neurodegenerative disease states. Kainic acid (KA) is an excitotoxic substance and the administration of it to rodents induces seizure activity (status epilepticus, SE) and leads to neurodegeneration. In this study the effect of KA-induced excitotoxicity on the G-protein activations and the gene expression levels of the opioid/nociceptin system receptors as MOPr, KOPr, DOPr, ORL-1, and PNOC (N/OFQ) were investigated, and the regulator effect of naloxone (Nal) on the gene expressions of the opioid system receptors against KA-induced seizures in the rat hippocampus was tested.
View Article and Find Full Text PDFMefenamic acid, a non-steroidal antiinflammatory drug (NSAID), directly and dose-dependently exhibits neuroprotective activity. In our study, we investigated the effects of mefenamic acid against d-serine on oxidative stress in the hippocampus, cortex and cerebellum of rats. Furthermore, the potential inflammatory and apoptotic effects of d-serine and potential protective effect of mefenamic acid were determined at mRNA and protein levels of TNF-α, IL-1β, Bcl-2 and Bax.
View Article and Find Full Text PDFIt has been known for centuries that exogenous cannabinoids, such as tetrahydrocannabinol have anticonvulsant activity. Recent studies have advanced our understanding of the endogenous cannabinoid system and renewed the interest in cannabinoids as a potential treatment for epilepsy. The endogenous cannabinoid system is rapidly activated after seizure activity but still little is known about the molecular mechanisms underlying the role of the cannabinoid system in epilepsy.
View Article and Find Full Text PDFOxidative stress is a pathway of injury that is common to almost all neurological conditions. Hence, methods to scavenge radicals have been extensively tested for neuroprotection. However, saving neurons alone may not be sufficient in treating CNS disease.
View Article and Find Full Text PDFD-serine plays a significant role in neuronal activity, including learning, memory, neuronal migration at developmental stages, and cell-death signaling. It has been also suggested that D-serine can potantiate the neurotoxicity induced by N-methyl-D-aspartate (NMDA) receptor activation due to its coagonist function. However, little is known about the role of D-serine in oxidative stress mechanisms.
View Article and Find Full Text PDFMu opioid receptors (MOR) are known to be involved in seizure activity. The main goal of the present study was to characterize the MOR mRNA expression, binding, as well as G protein activation mediated by these receptors in epileptic hippocampus of patients with pharmacoresistant mesial temporal lobe epilepsy (TLE). In contrast with autopsy samples, hippocampus obtained from patients with mesial TLE demonstrated enhanced MOR mRNA expression (116%).
View Article and Find Full Text PDFObjectives: The aim of this study was to investigate the effect of gamma-glutamylcysteine ethylester (GCEE), a precursor of glutathione biosynthesis, on the levels of glutathione, formation of reactive oxygen species and c-fos mRNA expression in rat hippocampus and cortex in kainic acid-induced excitotoxicity.
Methods: Sprague-Dawley rats were used and divided into four groups: control, kainic acid (10 mg/kg), GCEE (10 mg/kg) and kainic acid (10 mg/kg) + GCEE (10 mg/kg). Kainic acid and GCEE were administered to the rats intraperitoneally.
The aim of this study was to investigate the effect of gamma-Glutamylcysteine Ethyl Ester (GCEE) on the levels of GSH, caspase-3 activity, DNA damage and the expressions of Bcl-2, Bax and p53 mRNAs in rat hippocampus after status epilepticus (SE) induced by systemic kainic acid (KA). The male rats were divided into four groups as controls, KA (10 mg/kg), GCEE (10 mg/kg) and KA+GCEE. Glutathione (GSH) levels and caspase-3 activity were determined spectrophotometrically and colourimetrically, respectively.
View Article and Find Full Text PDFIn this study, we investigated the in vitro characteristics of mefenamic acid (MA) microparticles as well as their effects on DNA damage. MA-loaded chitosan and alginate beads were prepared by the ionotropic gelation process. Microsponges containing MA and Eudragit RS 100 were prepared by quasi-emulsion solvent diffusion method.
View Article and Find Full Text PDFThe selective estrogen receptor modulators (SERMs) are compounds that activate the estrogen receptors with different estrogenic and antiestrogenic tissue-specific effects. The similar effects of SERMs on estrogen encourage the efforts in the research of neuroprotective effects of SERMs. In our study, the potential neuroprotective effects of raloxifene were investigated on the brain cortex of ovariectomized rats after kainic acid-induced oxidative stress.
View Article and Find Full Text PDFIn some multidrug therapy programs, ketoconazole (KTZ) may be administered with some antacids that could modify its dissolution rate and reduce its absorption, thus leading to therapeutic failures. The primary aim of this study was to evaluate the influence of Compritol HD5 ATO and Compritol 888 ATO on this interaction in comparison with commercial KTZ tablets. The second aim was to prepare lipid granules of KTZ that could be an alternative to the commercial formulation.
View Article and Find Full Text PDFThe antioxidant activity of some compounds buffer the free radicals generated either endogenously or exogenously, thus decreasing the potential damage mediated by oxidation. Recent studies documented that raloxifene has antioxidant properties in vitro. However, there are limited animal studies available to show raloxifene's antioxidant properties.
View Article and Find Full Text PDF1. Accumulated clinical evidence suggests that selective oestrogen receptor modulators (SERM), such as raloxifene, may be neuroprotective. Oxidative stress is a likely molecular mechanism in the neurotoxicity of kainic acid (KA), an excitotoxic substance.
View Article and Find Full Text PDFKainic acid (KA) initiates neuronal injury and death by inducing oxidative stress and nitric oxide release from various regions of the brain. It was recently shown that melatonin has free radical-scavenging action and may protect against kainate-induced toxicity. In order to assess the possible supportive effect of melatonin treatment in KA-induced injury in the rat brain cortex, we determined malondialdehyde (MDA) levels as an index of lipid peroxidation, and assessed the activities of catalase (CAT) and superoxide dismutase (SOD) and the levels of nitrite/nitrate 35 male rats were divided into five groups, each receiving a different intraperitoneal treatment: saline solution (0.
View Article and Find Full Text PDF