Primary neuronal cultures have proven to be a powerful tool for studying mechanisms in neuroscience. It is technically challenging and expensive to reproduce high quality viable neuronal cultures. Laboratories that are not experienced or equipped to prepare primary neuron cultures may have difficulty producing consistent cultures for experiments.
View Article and Find Full Text PDFSynonymous and noncoding single nucleotide polymorphisms (SNPs) in the KCNJ6 gene, encoding G protein-gated inwardly rectifying potassium channel subunit 2 (GIRK2), have been linked with increased electroencephalographic frontal theta event-related oscillations (ERO) in subjects diagnosed with alcohol use disorder (AUD). To identify molecular and cellular mechanisms while retaining the appropriate genetic background, we generated induced excitatory glutamatergic neurons (iN) from iPSCs derived from four AUD-diagnosed subjects with KCNJ6 variants ("Affected: AF") and four control subjects without variants ("Unaffected: UN"). Neurons were analyzed for changes in gene expression, morphology, excitability and physiological properties.
View Article and Find Full Text PDFMultidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) is a critical efflux transporter that extrudes chemicals from the blood-brain barrier (BBB) and limits neuronal exposure to xenobiotics. Prior studies in malignant cells demonstrated that MDR1 expression can be altered by inhibition of histone deacetylases (HDAC), enzymes that modify histone structure and influence transcription factor binding to DNA. Here, we sought to identify the mechanisms responsible for the up-regulation of MDR1 by HDAC inhibitors in human BBB cells.
View Article and Find Full Text PDF