Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease.
View Article and Find Full Text PDFCastration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease.
View Article and Find Full Text PDFThe circadian system, a vital temporal regulator influencing physiological processes, has implications for cancer development and treatment response. Our study assessed circadian timing's impact on whole-brain radiotherapy outcomes in brain metastases for personalized cancer therapy insights. The aim of the study was to evaluate circadian influence on radiation treatment timing and its correlation with clinical outcomes and to identify patient populations benefiting from interventions synchronizing circadian rhythms, considering subgroup differences and potential disparities.
View Article and Find Full Text PDFPurpose: Improving clinical outcomes with novel drug combinations to treat metastatic castration-resistant prostate cancer (mCRPC) is challenging. Preclinical studies showed cabazitaxel had superior antitumor efficacy compared with docetaxel. Gene expression profiling revealed divergent effects of these taxanes in cycling cells.
View Article and Find Full Text PDFEthnopharmacological Relevance: Medicinal plants used for wound healing, are key to unlock the doors for combating the resistance of pathogens by provision of new source of compounds.
Aim Of The Study: This study is aimed to evaluate and compare the wound healing properties of ethanolic extract of Hedychium spicatum Sm. rhizome and of Zinnia peruviana's leaves and roots.
The use of bacteria in the synthesis of silver nanoparticles (AgNPs) emerges as an ecofriendly and exciting approach. In the present study, we reported the biosynthesis of AgNPs by using culture supernatant of the bacteria Bacillus licheniformis (MN900686). The biogenically synthesized AgNPs were confirmed by the change in the color of the culture filtrate from yellow to brown after the addition of AgNO.
View Article and Find Full Text PDFThe constitutively active androgen receptor (AR) splice variant, AR-V7, plays an important role in resistance to androgen deprivation therapy in castration resistant prostate cancer (CRPC). Studies seeking to determine whether AR-V7 is a partial mimic of the AR, or also has unique activities, and whether the AR-V7 cistrome contains unique binding sites have yielded conflicting results. One limitation in many studies has been the low level of AR variant compared to AR.
View Article and Find Full Text PDFPurpose: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation.
View Article and Find Full Text PDFThe tumor suppressor gene TP53 is the most frequently mutated gene in numerous cancer types, including prostate cancer (PCa). Specifically, missense mutations in TP53 are selectively enriched in PCa, and cluster to particular "hot spots" in the p53 DNA binding domain with mutation at the R273 residue occurring most frequently. While this residue is similarly mutated to R273C-p53 or R273H-p53 in all cancer types examined, in PCa selective enrichment of R273C-p53 is observed.
View Article and Find Full Text PDFThe retinoblastoma tumor suppressor (RB) is a critical regulator of E2F-dependent transcription, controlling a multitude of protumorigenic networks including but not limited to cell-cycle control. Here, genome-wide assessment of E2F1 function after RB loss in isogenic models of prostate cancer revealed unexpected repositioning and cooperation with oncogenic transcription factors, including the major driver of disease progression, the androgen receptor (AR). Further investigation revealed that observed AR/E2F1 cooperation elicited novel transcriptional networks that promote cancer phenotypes, especially as related to evasion of cell death.
View Article and Find Full Text PDFLoss of the retinoblastoma (RB) tumor suppressor protein is a critical step in reprogramming biological networks that drive cancer progression, although mechanistic insight has been largely limited to the impact of RB loss on cell-cycle regulation. Here, isogenic modeling of RB loss identified disease stage-specific rewiring of E2F1 function, providing the first-in-field mapping of the E2F1 cistrome and transcriptome after RB loss across disease progression. Biochemical and functional assessment using both and models identified an unexpected, prominent role for E2F1 in regulation of redox metabolism after RB loss, driving an increase in the synthesis of the antioxidant glutathione, specific to advanced disease.
View Article and Find Full Text PDFMechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer.
View Article and Find Full Text PDFEmerging evidence indicates the deubiquitinase USP22 regulates transcriptional activation and modification of target substrates to promote pro-oncogenic phenotypes. Here, characterization of tumor-associated USP22 upregulation and unbiased interrogation of USP22-regulated functions demonstrated critical roles for USP22 in prostate cancer. Specifically, clinical datasets validated that USP22 expression is elevated in prostate cancer, and a novel murine model demonstrated a hyperproliferative phenotype with prostate-specific USP22 overexpression.
View Article and Find Full Text PDFThe circadian clock is a master regulator of mammalian physiology, regulating daily oscillations of crucial biological processes and behaviors. Notably, circadian disruption has recently been identified as an independent risk factor for cancer and classified as a carcinogen. As such, it is imperative to discern the underpinning mechanisms by which circadian disruption alters cancer risk.
View Article and Find Full Text PDFPurpose: DNA-dependent protein kinase catalytic subunit (DNA-PK) is a pleiotropic kinase involved in DNA repair and transcriptional regulation. DNA-PK is deregulated in selected cancer types and is strongly associated with poor outcome. The underlying mechanisms by which DNA-PK promotes aggressive tumor phenotypes are not well understood.
View Article and Find Full Text PDFBackground: Androgen deprivation therapy is a first-line treatment for disseminated prostate cancer (PCa). However, virtually all tumors become resistant and recur as castration-resistant PCa, which has no durable cure. One major hurdle in the development of more effective therapies is the lack of preclinical models that adequately recapitulate the heterogeneity of PCa, significantly hindering the ability to accurately predict therapeutic response.
View Article and Find Full Text PDFPARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes.
View Article and Find Full Text PDFMetastatic prostate cancer (PCa) is primarily an androgen-dependent disease, which is treated with androgen deprivation therapy (ADT). Tumors usually develop resistance (castration-resistant PCa [CRPC]), but remain androgen receptor (AR) dependent. Numerous mechanisms for AR-dependent resistance have been identified including expression of constitutively active AR splice variants lacking the hormone-binding domain.
View Article and Find Full Text PDFProstate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation.
View Article and Find Full Text PDFPharmacol Ther
December 2013
In the United States, prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in males and the second leading cause of cancer-related death for men. The prostate is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is mediated by the androgen receptor (AR), a hormone activated transcription factor.
View Article and Find Full Text PDFAndrogen ablation therapy is the most common treatment for advanced prostate cancer (PCa), but most patients will develop castration-resistant prostate cancer (CRPC), which has no cure. CRPC is androgen-depletion resistant but androgen receptor (AR) dependent. AR is a nuclear receptor whose transcriptional activity is regulated by hormone binding to the ligand-binding domain (LBD).
View Article and Find Full Text PDFAndrogen ablation therapy represents the first line of therapeutic intervention in men with advanced or recurrent prostate tumors. However, the incomplete efficacy and lack of durable response to this clinical strategy highlights an urgent need for alternative treatment options to improve patient outcomes. Targeting the molecular chaperone heat shock protein 90 (Hsp90) represents a potential avenue for therapeutic intervention as its inhibition results in the coordinate blockade of multiple oncogenic signaling pathways in cancer cells.
View Article and Find Full Text PDF