Publications by authors named "Ayemeh Bagheri Hashkavayi"

Glycosylation, the intricate process of adding carbohydrate motifs to proteins, lipids, and exosomes on the cell surface, is crucial for both physiological and pathological mechanisms. Alterations in glycans significantly affect cancer cell metastasis by mediating cell-cell and cell-matrix interactions. The subtle changes in glycosylation during malignant transformations highlight the importance of analyzing cell and exosome surface glycosylation for prognostic and early treatment strategies in cancer.

View Article and Find Full Text PDF

Acinetobacter baumannii (A. baumannii) is a pathogenic bacterium that causes severe infections and its rapid and reliable diagnosis is essential for effective control and treatment. In this study, we present an electrochemical aptasensor based on a signal amplification strategy for the detection of A.

View Article and Find Full Text PDF

Acinetobacter baumannii (A. baumannii) is responsible for various nosocomial infections, which is known as a clinically crucial opportunistic pathogen. Therefore, rapid detection of this pathogen is critical to prevent the spread of infection and appropriate treatment.

View Article and Find Full Text PDF

An electrochemical aptasensor has been developed to detect Acinetobacter baumannii (A. baumannii). The proposed system was developed by modifying carbon screen-printed electrodes (CSPEs) with a synthesized MWCNT@FeO@SiO-Cl nanocomposite and then binding A.

View Article and Find Full Text PDF

Diabetic foot ulcers are chronic wounds that affect millions and increase the risk of amputation and mortality, highlighting the critical need for their early detection. Recent demonstrations of wearable sensors enable real-time wound assessment, but they rely on bulky electronics, making them difficult to interface with wounds. Herein, a miniaturized, wireless, battery-free wound monitor that measures lactate in real-time and seamlessly integrates with bandages for conformal attachment to the wound bed is introduced.

View Article and Find Full Text PDF

A sensitive electrochemical molecularly imprinted polymer (MIP) sensor was fabricated for detection of ezetimibe (Eze) as an effective cholesterol absorption inhibitor on the surface of a screen-printed carbon electrode based on a magnetic nanoparticle decorated with MIP (FeO@MIP). Placing the magnetic nanoparticle inside the MIP increases the biocompatibility, surface-to-volume ratio, and sensitivity of the sensor. Methacrylic acid (MAA) was used as a monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and Eze as a template.

View Article and Find Full Text PDF

An electrochemical aptasensor developed to realize the detection of Pseudomonas aeruginosa (P. aeruginosa) bacteria based on a signal amplification strategy. The carbon screen-printed electrode (CSPE) surface was modified by MIL-101(Cr)/Multi-walled carbon nanotubes (MWCNT), which significantly increased the effective surface area of the electrode, thus resulting in further F23 aptamer immobilization at the surface of the modified electrode.

View Article and Find Full Text PDF

Breast cancer is one of the leading causes of cancer-related death. An effective diagnostic system that enables early cancer detection is required for timely diagnosis and better treatment outcomes. Here, we developed an ultrasensitive electrochemical aptasensor for the multiplex detection of exosome biomarkers based on the electrochemical signals of metal ions.

View Article and Find Full Text PDF

In recent years, cerium oxide (CeO) nanoparticles (NPs) have drawn significant attention owing to their intrinsic enzyme mimetic properties, which make them powerful tools for biomolecular detection. In this work, we evaluated the effect of pyrophosphate (PPi) on the oxidase activity of CeO NPs. The presence of PPi was found to enhance the oxidase activity of CeO NPs, with enhanced colorimetric signals.

View Article and Find Full Text PDF
Article Synopsis
  • Exosomes are small vesicles released by different cell types and found in bodily fluids; they play a key role in intercellular communication and contain biomarkers that reflect the health of their parent cells.
  • These vesicles are particularly significant in cancer research as they can indicate tumorigenesis and metastasis, making them useful for early cancer detection.
  • The review focuses on the use of aptamers—specialized bioreceptors that offer advantages over antibodies—for detecting exosome biomarkers through various signaling methods, especially electrochemical strategies known for their ease, cost-effectiveness, and sensitivity.
View Article and Find Full Text PDF

In this paper, we report the application of a reusable electrochemical aptasensor for detection of tryptophan by using [Fe(bpy)](p-CHCHSO) as an electroactive indicator and based on the target-compelled aptamer displacement. The aptasensor fabricated by self-assembling the thiolated probe on the surface of graphite screen-printed electrode modified with gold nanoparticles/multiwalled carbon nanotubes and chitosan nanocomposite (AuNPs/MWCNTs-Chit/SPE). Afterward, Trp aptamer (Apt) immobilized on the modified electrode surface through hybridization.

View Article and Find Full Text PDF

In this paper, a new and facile method for the electrochemical determination of l-tyrosine was designed. First, 3-mercaptopropyl trimethoxysilane-functionalized silica nanoparticles were added to a paper disc. Then, the banana peel tissue and the mediator potassium hexacyanoferrate were dropped onto the paper, respectively.

View Article and Find Full Text PDF

In this work, a highly sensitive, low-cost, and label-free aptasensor based on signal-on mechanisms of response was developed by immobilizing the aptamer on gold nanoparticles (AuNPs)/amine-functionalized silica nanoparticle (FSN)/screen-printed electrode (SPE) surface for highly selective electrochemical detection of tryptophan (Trp). The hemin (Hem), which interacted with the guanine bases of the aptamer, worked as a redox indicator to generate a readable electrochemical signal. The changes in the charge transfer resistance have been monitored using the voltammetry and electrochemical impedance spectroscopic (EIS) techniques.

View Article and Find Full Text PDF

The present work describes a label free electrochemical aptasensor for selective detection of epirubicin. In this project, 5'-thiole terminated aptamer was self-assembled on carbon screen printed electrode, which modified with electrodeposited gold nanoparticles on magnetic double-charged diazoniabicyclo [2.2.

View Article and Find Full Text PDF

Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules.

View Article and Find Full Text PDF

A highly sensitive and low-cost electrochemical aptasensor was developed for the determination of chloramphenicol (CAP). The system was based on a CAP-binding aptamer, a molecular recognition element, and 1,4-diazabicyclo[2.2.

View Article and Find Full Text PDF

The interactions of sulfadiazine (SD), an antimicrobial drug, with double-stranded calf thymus DNA on the multi-walled carbon nanotubes modified glassy carbon electrode (MWCNT-GCE) have been studied by cyclic voltammetry and UV-vis spectroscopy. In the presence of DNA, the oxidation peak current of SD decreases and the peak potential shifts to a positive potential which indicates the interaction of SD with DNA. The binding of SD with DNA shows both electrostatic and intercalative modes.

View Article and Find Full Text PDF