Global demand for animal protein is on the rise, but many practices common in conventional production are no longer scalable due to environmental impact, public health concerns, and fragility of food systems. For these reasons and more, a pressing need has arisen for sustainable, nutritious, and animal welfare-conscious sources of protein, spurring research dedicated to the production of cultivated meat. Meat mainly consists of muscle, fat, and connective tissue, all of which can be sourced and differentiated from pluripotent stem cells to resemble their nutritional values in muscle tissue.
View Article and Find Full Text PDFGlycosylation on the Fc region of recombinant Immunoglobulin G (IgG) therapeutic antibodies is a critical protein quality attribute which may affect the efficacy and safety of the molecule. During the development of biosimilar therapeutics, adjustment of the glycosylation profile is required in order to match the reference innovator profile. Deoxymannojirimycin (DMJ), a known inhibitor of mannosidase, was used in this study to modulate the glycosylation pattern of antibodies.
View Article and Find Full Text PDFThe human 3-methyladenine DNA glycosylase (AAG) recognizes and excises a broad range of purines damaged by alkylation and oxidative damage, including 3-methyladenine, 7-methylguanine, hypoxanthine (Hx), and 1,N(6)-ethenoadenine (epsilonA). The crystal structures of AAG bound to epsilonA have provided insights into the structural basis for substrate recognition, base excision, and exclusion of normal purines and pyrimidines from its substrate recognition pocket. In this study, we explore the substrate specificity of full-length and truncated Delta80AAG on a library of oligonucleotides containing structurally diverse base modifications.
View Article and Find Full Text PDFDNA interstrand cross-links (ICLs), widely used in chemotherapy, are cytotoxic lesions because they block replication and transcription. Repair of ICLs involves proteins from different repair pathways however the precise mechanism is still not completely understood. Here, we report that the 3-methyladenine DNA glycosylase (Aag), an enzyme that initiates base excision repair at a variety of alkylated bases, is also involved in the repair of ICLs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2003
A critical feature of the robustness of the DNA replication machinery is the ability to complete its task in the presence of interfering DNA damage. A key mechanism responsible for this task is translesion replication (also termed translesion synthesis), carried out by specialized lesion bypass DNA polymerases of the Y superfamily. Here we show that in Escherichia coli, plasmids can be replicated across a segment of foreign non-DNA material, consisting of hydrocarbon chains of 3 or 12 methylene residues.
View Article and Find Full Text PDFUnrepaired replication-blocking DNA lesions are bypassed by specialized DNA polymerases, members of the Y super-family. In Escherichia coli the major lesion bypass DNA polymerase is pol V, whereas the function of its homologue, pol IV, is not fully understood. In vivo analysis showed that pol V has a major role in bypass across an abasic site analog, with little or no involvement of pol IV.
View Article and Find Full Text PDFBypass of replication-blocking lesions in Escherichia coli is carried out by DNA polymerase V (UmuC) in a reaction that requires UmuD', RecA, and single-strand DNA-binding protein (SSB). The activity of this four-component basic bypass system is a low-fidelity and low-processivity activity. Addition of the processivity subunits of pol III, the beta subunit sliding DNA clamp, and the five-subunit gamma complex clamp loader increased the rate of translesion replication approximately 3-fold.
View Article and Find Full Text PDF