Publications by authors named "Ayelet Cohen-Yeshurun"

In recent years, a library of approx. 70 N-acyl aminoacids (NAAAs) was discovered in the rat brain. A particular member of this family of compounds is arachidonoyl serine (AraS), which has generated special interest as a potential therapy for traumatic brain injury (TBI).

View Article and Find Full Text PDF

Background: Chronic morphine treatment inhibits neural progenitor cell (NPC) progression and negatively effects hippocampal neurogenesis. However, the effect of acute opioid treatment on cell development and its influence on NPC differentiation and proliferation in vitro is unknown. We aim to investigate the effect of a single, short term exposure of morphine on the proliferation, differentiation and apoptosis of NPCs and the mechanism involved.

View Article and Find Full Text PDF

N-arachidonoyl-L-serine (AraS) is a novel neuroprotective endocannabinoid. We aimed to test the effects of exogenous AraS on neurogenesis after traumatic brain injury (TBI). The effects of AraS on neural progenitor cells (NPC) proliferation, survival, and differentiation were examined in vitro.

View Article and Find Full Text PDF

N-arachidonoyl-L-serine (AraS) is a brain component structurally related to the endocannabinoid family. We investigated the neuroprotective effects of AraS following closed head injury induced by weight drop onto the exposed fronto-parietal skull and the mechanisms involved. A single injection of AraS following injury led to a significant improvement in functional outcome, and to reduced edema and lesion volume compared with vehicle.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) represents the leading cause of death in young individuals. It triggers the accumulation of harmful mediators, leading to secondary damage, yet protective mechanisms are also set in motion. The endocannabinoid (eCB) system consists of ligands, such as anandamide and 2-arachidonoyl-glycerol (2-AG), receptors (e.

View Article and Find Full Text PDF