Publications by authors named "Ayelen Gomez"

Adverse pregnancy outcomes have been associated with the presence of glyphosate (G) in umbilical cord, serum, and urine samples from pregnant women. Our aim was to study the effect of G on blastocyst implantation using an in vitro mouse model, and the migration and acquisition of endothelial phenotype of the human trophoblastic HTR8/SVneo (H8) cells. In mouse blastocysts, no differences in attachment time and implantation outgrowth area were observed after G exposure.

View Article and Find Full Text PDF

Pubertal mammary branching morphogenesis is a hormone-regulated process susceptible to exposure to chemicals with endocrine disruptive capacity, such as the UV-filter benzophenone-3 (BP3). Our aim was to assess whether intrauterine or in vitro exposure to BP3 modified the branching morphogenesis of the female mouse mammary gland. For this, pregnant mice were dermally exposed to BP3 (0.

View Article and Find Full Text PDF

This study aimed to assess whether perinatal exposure to propiconazole (PRO), glyphosate (GLY) or their mixture (PROGLY) alters key endocrine pathways and the development of the male rat mammary gland. To this end, pregnant rats were orally exposed to vehicle, PRO, GLY, or a mixture of PRO and GLY from gestation day 9 until weaning. Male offspring were euthanized on postnatal day (PND) 21 and PND60.

View Article and Find Full Text PDF

The plastic monomer and plasticizer bisphenol A (BPA), and the UV-filter benzophenone-3 (BP3) have been shown to have estrogenic activities that could alter mammary gland development. Our aim was to analyze whether BPA or BP3 direct exposure affects the functional differentiation of the mammary gland using an in vitro model. Mammary organoids were obtained and isolated from 8 week-old virgin female C57BL/6 mice and were differentiated on Matrigel with medium containing lactogenic hormones and exposed to: a) vehicle (0.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of glyphosate-based herbicide exposure during pregnancy and breastfeeding on the development of male rat mammary glands, focusing on pre-puberty.
  • Exposure to low doses of the herbicide resulted in reduced proliferation in mammary glands, along with lower expression of key hormone and growth factor receptors.
  • High doses showed complex interactions, highlighting the need for further research to fully understand the endocrine-disrupting actions of glyphosate on male mammary development.
View Article and Find Full Text PDF

The exposure to agrochemical pesticides has been associated with several chronic diseases, including different types of cancer and reproductive disorders. In addition, because agrochemical pesticides may act as endocrine disrupting chemicals (EDCs) during different windows of susceptibility, they can increase the risk of impairing the normal development of the mammary gland and/or of developing mammary lesions. Therefore, the aim of this review is to summarize how exposure to different agrochemical pesticides suspected of being EDCs can interfere with the normal development of the mammary gland and the possible association with breast cancer.

View Article and Find Full Text PDF

Breast cancer is the most common cancer type in females worldwide. Environmental exposure to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but may influence gene expression by disturbances in epigenetic regulation. Expression of long interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several cancers.

View Article and Find Full Text PDF

In the present study, we analyzed the effects of a short-term environmental enrichment on the mRNA expression and DNA methylation of steroidogenic enzymes in the hippocampus. Thus, young adult (80-day-old) and middle-aged (350-day-old) Wistar female rats were exposed to sensory (SE) or motor (ME) enrichment during 10 days and compared to animals housed under standard conditions. SE was provided by an assortment of objects that included plastic tubes and toys; for ME, rodent wheels were provided.

View Article and Find Full Text PDF

Postnatal treatment with glyphosate-based herbicides (GBHs) induces endocrine-disrupting effects on the male rat mammary gland. In this study, the effects of developmental exposure to GBH on mammary gland growth and development, and the possible molecular mechanisms involved, were evaluated in pre- and post-pubertal male rats. To this end, pregnant rats were orally exposed through the food to 0, 3.

View Article and Find Full Text PDF
Article Synopsis
  • The study assessed the impact of postnatal exposure to a glyphosate-based herbicide (GBH) on mammary gland development in male rats during pre- and post-puberty.
  • Male rats were injected with GBH or saline solution, with evaluations conducted on mammary gland morphology, hormone levels, and receptor expression at specific developmental stages.
  • Results indicated that GBH exposure led to greater mammary gland development, characterized by increased collagen organization and terminal end buds, suggesting endocrine disruption without affecting hormone serum levels.
View Article and Find Full Text PDF

Our aim was to evaluate whether postnatal exposure to endosulfan (ENDO) modifies mammary gland (MG) development in pre- and post-pubertal male rats. From postnatal day 1 (PND1) to PND7, male rats were injected subcutaneously every 48h with either corn oil (vehicle) or 600μg ENDO/kg.bw.

View Article and Find Full Text PDF

The development of the mammary gland is a hormone-regulated event. Several factors can dysregulate its growth and make the gland more susceptible to cellular transformation. Among these factors, perinatal exposure to xenoestrogens and hormone replacement therapy has been associated with increased risk of developing breast cancer.

View Article and Find Full Text PDF

With the aim to analyze whether bisphenol A (BPA) modifies β-Casein (β-Cas) synthesis and transcriptional regulation in perinatally exposed animals, here, pregnant F0 rats were orally exposed to 0, 0.6 or 52 μg BPA/kg/day from gestation day 9 until weaning. Then, F1 females were bred and mammary glands were obtained on lactation day 2.

View Article and Find Full Text PDF

To evaluate whether bisphenol A (BPA) modifies the synthesis, composition and/or profile of fatty acids (FAs) in the mammary glands of perinatally exposed animals, pregnant rats were orally exposed to 0, 0.6 or 52 µg BPA/kg/day from gestation day (GD) 9 until weaning. F1 females were bred, and on GD21, lactation day 2 (LD2) and LD10, mammary glands were obtained.

View Article and Find Full Text PDF