Gem-diols are defined as organic molecules carrying two hydroxyl groups at the same carbon atom, which is the result of the nucleophilic addition of water to a carbonyl group. In this work, the generation of the hydrated or hemiacetal forms using pyridine- and imidazole-carboxaldehyde isomers in different chemical environments was studied by Nuclear Magnetic Resonance (NMR) recorded in different media and combined with theoretical calculations. The change in the position of aldehyde group in either the pyridine or the imidazole ring had a clear effect in the course of the hydration/hemiacetal generation reaction, which was favored in protic solvents mainly in the presence of methanol.
View Article and Find Full Text PDFThree new single-crystal structures were isolated for picolinic acid (), the trifluoroacetate salt of picolinic acid (), and pyridoxal hydrochloride (). These compounds displayed unconventional crystallographic features that must be considered when structural refinements are carried out. Thus, the generated Fourier differences map obtained with the diffraction data collected at 100 K was crucial to visualize electron densities, which were balanced by either one hydrogen atom or a hydrogen atom with an occupancy factor of 1/2 located between either two carboxylate moieties, two phenolic oxygen atoms, or two pyridinic nitrogen atoms.
View Article and Find Full Text PDFThis work describes the synthesis of 4-(4-AcPy) and 3-acetylpyridine (3-AcPy) copper soluble complexes for the activation of hydrogen peroxide and the concomitant generation of reactive oxygen species (ROS). Given the paramagnetic effects of copper ions in the Nuclear Magnetic Resonance (NMR) lines, we aimed at demonstrating that the combination of high-resolution 2D solid-state NMR experiments, Electron Paramagnetic Resonance (EPR), single-crystal X-ray crystallography and Density Functional Theory (DFT) calculations allows a detailed study of the chemical structure of the ligands and the surrounding metal ions. The copper complexes synthesized with CuCl were useful for the activation of H O during which the only ROS was the hydroxyl one, as demonstrated by EPR experiments.
View Article and Find Full Text PDFThe complex chemical functionalization of aldehyde moieties in Cu(ii)- and Co(ii)-pyridinecarboxaldehyde complexes was studied. X-ray studies demonstrated that the aldehyde group (RHO) of the four pyridine molecules is converted to dihydrogen ester (R(OCH)(OH)) and hemiacetal (RH(OH)(OCH)) moieties in both 4-pyridinecarboxaldehyde copper and cobalt complexes. In contrast, the aldehyde group is retained when the 3-pyridinecarboxaldehyde ligand is complexed with cobalt.
View Article and Find Full Text PDFThe stability of gem-diol forms in imidazolecarboxaldehyde isomers was studied by solid-state nuclear magnetic resonance (ss-NMR) combined with single-crystal X-ray diffraction studies. These methodologies also allowed determining the factors governing the occurrence of such rare functionalization in carbonyl moieties. Results indicated that the position of the carbonyl group is the main factor that governs the generation of geminal diols, having a clear and direct effect on hydration, since, under the same experimental conditions, only 36% of 5-imidazolecarboxaldehydes and 5% of 4-imidazolecarboxaldehydes were hydrated, as compared to 2-imidazolecarboxaldehydes, with which a 100% hydration was achieved.
View Article and Find Full Text PDFThe gem-diol moieties of organic compounds are rarely isolated or even studied in the solid state. Here, liquid- and solid-state NMR, together with single-crystal X-ray diffraction studies, were used to show different strategies to favor the gem-diol or carbonyl moieties and to isolate hemiacetal structures in formylpyridine and vitamin-B-related compounds. The change in position of the carbonyl group in pyridine compounds had a clear and direct effect on the hydration, which was enhanced by trifluoroacetic acid addition.
View Article and Find Full Text PDF