The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (P). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [C]mannitol were established to monitor microtissue integrity.
View Article and Find Full Text PDFRisk of lung damage from inhaled chemicals or substances has long been assessed using animal models. However, New Approach Methodologies (NAMs) that replace, reduce, and/or refine the use of animals in safety testing such as 2D and 3D cultures are increasingly being used to understand human-relevant toxicity responses and for the assessment of hazard identification. Here we review 2D and 3D lung models in terms of their application for inhalation toxicity assessment.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
June 2024
Personal lubricants intended for local or systemic delivery via the vaginal route can induce vaginal irritation, damage the vaginal epithelial barrier which can enhance microbial entry, induce inflammation, and alter the microbiome of the vaginal ecosystem. Therefore, manufacturers of personal lubricants and medical devices are required to show biocompatibility and safety assessment data to support regulatory decision-making within a specified context of use. Furthermore, due to ethical concerns and the introduction of the 7th amendment of the European Council Directive which bans animal testing for cosmetic ingredients and products coupled with the Food and Drug Administration modernization Act 2.
View Article and Find Full Text PDFQuetiapine hemifumarate (QF) delivery to the CNS via conventional formulations is challenging due to poor solubility and lower oral bioavailability (9 %). Similarly, many other second-generation antipsychotics, such as olanzapine, clozapine, and paliperidone, have also shown low oral bioavailability of <50 %. Hence, the present work was intended to formulate QF-loaded biodegradable PLGA-NPs with appropriate surface charge modification through poloxamer-chitosan and investigate its targeting potential on RPMI-2650 cell lines to overcome the limitations of conventional therapies.
View Article and Find Full Text PDFIn vivo models (mostly rodents) are currently accepted by regulatory authorities for assessing acute inhalation toxicity. Considerable efforts have been made in recent years to evaluate in vitro human airway epithelial models (HAEM) as replacements for in vivo testing. In the current work, an organotypic in vitro rat airway epithelial model (RAEM), rat EpiAirway, was developed and characterized to allow a direct comparison with the available HAEM, human EpiAirway, in order to address potential interspecies variability in responses to harmful agents.
View Article and Find Full Text PDFThe vaginal microbiome influences a wide range of health outcomes in women, where a microbiome dominated by spp. is considered optimal and associated with reduced risk of pre-term birth and acquisition of sexually transmitted infections including HIV. Conversely, replacement of lactobacilli by non-optimal bacteria leads to the development of bacterial vaginosis, which is associated with increased risk of these outcomes.
View Article and Find Full Text PDFPharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus interactions. We evaluated 6,710 clinical and preclinical compounds targeting 2,183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target, and cell interactome produced cellular networks important for infection.
View Article and Find Full Text PDFAbsorption, distribution, metabolism and excretion (ADME) studies represent a fundamental step in the early stages of drug discovery. In particular, the absorption of orally administered drugs, which occurs at the intestinal level, has gained attention since poor oral bioavailability often led to failures for new drug approval. In this context, several in vitro preclinical models have been recently developed and optimized to better resemble human physiology in the lab and serve as an animal alternative to accomplish the 3Rs principles.
View Article and Find Full Text PDFIdentification of host factors contributing to replication of viruses and resulting disease progression remains a promising approach for development of new therapeutics. Here, we evaluated 6710 clinical and preclinical compounds targeting 2183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target and cell interactome networking produced cellular networks important for infection.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
February 2021
The gastrointestinal tract (GIT), in particular, the small intestine, plays a significant role in food digestion, fluid and electrolyte transport, drug absorption and metabolism, and nutrient uptake. As the longest portion of the GIT, the small intestine also plays a vital role in protecting the host against pathogenic or opportunistic microbial invasion. However, establishing polarized intestinal tissue models in vitro that reflect the architecture and physiology of the gut has been a challenge for decades and the lack of translational models that predict human responses has impeded research in the drug absorption, metabolism, and drug-induced gastrointestinal toxicity space.
View Article and Find Full Text PDFIntestinal permeability is crucial in regulating the bioavailability and, consequently, the biological effects of drugs and compounds. However, systematic and quantitative studies of the absorption of molecules are quite limited due to a lack of reliable experimental models able to mimic human in vivo responses. In this work, we present an in vitro perfused model of the small intestinal barrier using a 3D reconstructed intestinal epithelium integrated into a fluid-dynamic bioreactor (MIVO®) resembling the physiological stimuli of the intestinal environment.
View Article and Find Full Text PDFCyclodextrin complex of nintedanib was prepared aiming for increased bio-activity and improved transport across intestinal membrane with reduced p-glycoprotein (p-gp) efflux. Based on preliminary phase solubility studies and molecular modeling, sulfobutyl ether derivative of β-cyclodextrin (SBE-β-CD, Captisol) was selected to prepare inclusion complex. Complexation was confirmed using FTIR, 1H NMR, DSC, and XRD.
View Article and Find Full Text PDFDrug-induced gastrointestinal toxicities (GITs) rank among the most common clinical side effects. Preclinical efforts to reduce incidence are limited by inadequate predictivity of in vitro assays. Recent breakthroughs in in vitro culture methods support intestinal stem cell maintenance and continual differentiation into the epithelial cell types resident in the intestine.
View Article and Find Full Text PDFMost of the widely used vaginal lubricants in the U.S. and Europe are strongly hyperosmolal, formulated with high concentrations of glycerol, propylene glycol, polyquaternary compounds or other ingredients that make these lubricants 4 to 30 times the osmolality of healthy vaginal fluid.
View Article and Find Full Text PDFPurpose: The study evaluates the use of new in vitro primary human cell-based organotypic small intestinal (SMI) microtissues for predicting intestinal drug absorption and drug-drug interaction.
Methods: The SMI microtissues were reconstructed using human intestinal fibroblasts and enterocytes cultured on a permeable support. To evaluate the suitability of the intestinal microtissues to model drug absorption, the permeability coefficients across the microtissues were determined for a panel of 11 benchmark drugs with known human absorption and Caco-2 permeability data.
Shigella is unique among enteric pathogens, as it invades colonic epithelia through the basolateral pole. Therefore, it has evolved the ability to breach the intestinal epithelial barrier to deploy an arsenal of effector proteins, which permits bacterial invasion and leads to a severe inflammatory response. However, the mechanisms used by Shigella to regulate epithelial barrier permeability remain unknown.
View Article and Find Full Text PDFAdverse drug reactions affecting the gastrointestinal (GI) tract are a serious burden on patients, healthcare providers and the pharmaceutical industry. GI toxicity encompasses a range of pathologies in different parts of the GI tract. However, to date no specific mechanistic diagnostic/prognostic biomarkers or translatable pre-clinical models of GI toxicity exist.
View Article and Find Full Text PDFSystemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms.
View Article and Find Full Text PDFEstrogen and progesterone regulate proliferation and differentiation of epithelial cells in the female genital tract. We investigated the effects of these hormones on reconstructed human organotypic vaginal epithelial tissue models (EpiVaginal). We ascertained that epithelial cells in the tissue models express estrogen and progesterone receptors.
View Article and Find Full Text PDFBackground: Psoriasis is a chronic inflammatory disorder of skin and joints for which conventional treatments that are effective in clearing the moderate-to-severe disease are limited due to long-term safety issues. This necessitates exploring the usefulness of botanical agents for treating psoriasis. We previously showed that delphinidin, a diet-derived anthocyanidin endowed with antioxidant and anti-inflammatory properties, induces normal epidermal keratinocyte differentiation and suggested its possible usefulness for the treatment of psoriasis [1].
View Article and Find Full Text PDFThe vaginal mucosa is commonly exposed to chemicals and therapeutic agents that may result in irritation and/or inflammation. In addition to acute effects, vaginal irritation and inflammation can make women more susceptible to infections such as HIV-1 and herpes simplex virus 2 (HSV-2). Hence, the vaginal irritation potential of feminine care formulations and vaginally administered therapeutic agents is a significant public health concern.
View Article and Find Full Text PDFA predictive allergenicity test system for assessing the contact allergenicity of chemicals is needed by the cosmetic and pharmaceutical industry to monitor product safety in the marketplace. Development of such non-animal alternative assay systems for skin sensitization and hazard identification has been pursued by policy makers and regulatory agencies. We investigated whether phenotypic and functional changes to a subset of dendritic cells (DC), plasmacytoid DC (pDC), could be used to identify contact allergens.
View Article and Find Full Text PDFLangerhans cells (LCs) are a subset of dendritic cells (DCs) that reside within epidermal and mucosal tissue. Because of their location, LCs are potentially the first cells to encounter human immunodeficiency virus (HIV) during sexual transmission. We report that LCs purified from CD34(+)-derived DCs can facilitate the transinfection of target cells but only after activation.
View Article and Find Full Text PDFThree-dimensional models of the human oral epithelia have been developed to test the irritation of oral-care products and to provide systems to study the pathology of the oral cavity. The in vitro tissue models, cultured using normal oral epithelial cells and serum free medium, adopt a buccal or gingival phenotype. The buccal tissue (designated ORL-200) is 8-12 cell layers thick and non-cornified; the gingival tissue (designated GIN-100) is 9-13 layers thick and cornified at the apical surface.
View Article and Find Full Text PDFA three-dimensional organotypic vaginal-ectocervical (VEC) tissue model has been developed to test the irritation of topically applied spermicides, microbicides, and vaginal-care products. The in vitro tissue model was reconstructed using normal VEC epithelial cells and is well stratified, containing differentiated basal, suprabasal, intermediate, and superficial cell layers similar to in vivo tissue. The intermediate and superficial cell layers contain glycogen, and the expression of cytokeratins 13 and 14 in the tissue also parallels that of native tissue.
View Article and Find Full Text PDF