Transition-metal oxide has been identified as an auspicious material for supercapacitors due to its exceptional capacity. The inadequate electrochemical characteristics, such as prolonged cycle stability, can be ascribed to factors, such as low electrical conductivity, sluggish reaction kinetics, and a deficiency of active sites. The transition-metal oxides derived from the MOF materials offer a larger surface area with enriched active sites and a faster reaction rate along with good electrical conductivity.
View Article and Find Full Text PDFHerein, we report a facile hydrothermal synthesis of MnO₂ nanoparticles anchored multi walled carbon nanotubes (MnO₂@MWCNTs) as potential anode materials for lithium-ion (Li-ion) batteries. The prepared MnO₂@MWCNTs were characterized by several techniques which confirmed the formation of MnO₂ nanoparticles anchored MWCNTs. The X-ray diffraction and Raman-scattering analyses of the prepared material further revealed the effective synthesis of MnO₂@MWCNTs.
View Article and Find Full Text PDF