Objective: Apert syndrome, an autosomal dominant congenital disorder characterized by craniosynostosis, is caused by a missense mutation (S252W or P253R) in fibroblast growth factor receptor 2 (FGFR2). Exosomes are naturally occurring carriers that deliver nucleic acids, including small interfering RNA (siRNA), to induce gene silencing. This study aimed to develop siRNA-loaded exosomes (Ex-siRNA) to silence the Fgfr2 gain-of-function mutation, thereby inhibiting the increased osteoblastic differentiation caused by the constitutive activation of FGFR2 signaling in calvarial osteoblastic cells isolated from Apert syndrome model mice.
View Article and Find Full Text PDFBackground/objectives: Hypoxia during orthodontic tooth movement (OTM) induces reactive oxygen species (ROS) production in periodontal tissues. Superoxide dismutase 3 (SOD3) is an anti-inflammatory enzyme that protects cells from ROS. This study investigated the expression and function of SOD3 during rat OTM and in hypoxia-exposed rat periodontal ligament (PDL) cells.
View Article and Find Full Text PDF