Publications by authors named "Ayda Saldivar"

As part of our efforts to identify potent HIV-1 protease inhibitors that are active against resistant viral strains, structural modification of the azacyclic urea (I) was undertaken by incorporating acyl groups as P(1)' ligands. The extensive SAR study has yielded a series of N-acyl azacyclic ureas (II), which are highly potent against both wild-type and multiple PI-resistant viral strains.

View Article and Find Full Text PDF

The HIV protease inhibitor ABT-378 (lopinavir) has a six-member cyclic urea in the P-2 position. A series of analogues in which the six-member cyclic urea is replaced by various heterocycles was synthesized and the structure-activity relationships explored.

View Article and Find Full Text PDF

A series of novel peptidyl-alpha-ketoamide compounds were evaluated as inhibitors of the deltaNS3-NS4A serine protease from the hepatitis C virus. These peptidyl-alpha-ketoamide inhibitors with Ki values ranging from 0.17 nM to 5.

View Article and Find Full Text PDF

Isopropyl substituted 4-thioazolyl valine side chains are highly optimized P(2)-P(3) ligands for C2 symmetry-based HIV protease inhibitors, as exemplified by the drug ritonavir. Replacement of the side chain with the conformationally constrained hexahydrofurofuranyloxy P(2) ligand in combination with a dimethylphenoxyacetate on the other end of the ritonavir core diamine yielded highly potent HIV protease inhibitors. The in vitro antiviral activity in MT4 cells increased by 10- and 20-fold, respectively, in the absence and presence of 50% human serum compared to ritonavir.

View Article and Find Full Text PDF

Indandiones were identified as a novel class of small molecule inhibitors of hepatitis C virus NS3 serine protease from high throughput screening. We further studied the structure activity relationships and the mechanisms of inhibition for this class of compounds. Our studies revealed two similar, yet different, mechanisms accounting for the apparent indandione inhibition of HCV NS3 protease.

View Article and Find Full Text PDF

Combinatorial and structure-based medicinal chemistry strategies were used together to advance a lead compound with an activity of K(i) = 58 microM via a potency enhancement of >70 000-fold to an analogue with an activity of K(i) = 0.8 nM against influenza neuraminidase (A/Tokyo/67). Lead optimization was initiated using molecular modeling and combinatorial chemistry.

View Article and Find Full Text PDF

The HIV protease inhibitor Lopinavir has a pseudosymmetric core unit incorporating benzyl groups at both P-1, P-1' positions. A series of analogues incorporating non-aromatic side chains at the P-1 position were synthesized and the structure-activity relationships explored.

View Article and Find Full Text PDF

The HIV protease inhibitor ABT-378 (Lopinavir) has a 2,6-dimethylphenoxyacetyl group in the P-2' position. Analogues in which this group is replaced with various substituted phenyl or heteroaryl groups were synthesized and the structure-activity relationships explored.

View Article and Find Full Text PDF