Bacterial infectious diseases are a major threat to human health. Timely and sensitive pathogenic bacteria detection is crucial in bacterial contaminations identification and preventing the spread of infectious diseases. Due to limitations of conventional bacteria detection techniques there have been concerted research efforts towards developing new biosensors.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFSingle particle level visualization of biological nanoparticles such as viruses and exosomes is challenging due to their small size and low dielectric contrast. Fluorescence based methods are highly preferred, however they require labelling which may perturb the functionality of the particle of interest. On the other hand, wide-field interferometric microscopy can be used to detect sub-diffraction limited nanoparticles without using any labels.
View Article and Find Full Text PDFFluorescence based microarray detection systems provide sensitive measurements; however, variation of probe immobilization and poor repeatability negatively affect the final readout, and thus quantification capability of these systems. Here, we demonstrate a label-free and high-throughput optical biosensor that can be utilized for calibration of fluorescence microarrays. The sensor employs a commercial flatbed scanner, and we demonstrate transformation of this low cost (∼100 USD) system into an Interferometric Reflectance Imaging Sensor through hardware and software modifications.
View Article and Find Full Text PDFExosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30-100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and digital counting of various populations of individual exosomes (>50 nm) captured on a microarray-based solid phase chip.
View Article and Find Full Text PDFInterferometric imaging schemes have gained significant interest due to their superior sensitivity over imaging techniques that are solely based on scattered signal. In this study, we outline the theoretical foundations of imaging and characterization of single nanoparticles in an interferometric microscopy scheme, examine key parameters that influence the signal, and benchmark the model against experimental findings.
View Article and Find Full Text PDFOver the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion.
View Article and Find Full Text PDFLiving-cell-based screens can facilitate lead discovery of functional therapeutics of interest. A versatile and scalable method is reported that uses dense arrays of nanowells for imparting defined patterns on monolayers of cells. It is shown that this approach can coordinate a multi-component biological assay by designing and implementing a high-throughput, functional nanoliter-scale neutralization assay to identify neutralizing antibodies against HIV.
View Article and Find Full Text PDF