Publications by authors named "Ayca Aygun"

As human-machine teams are being considered for a variety of mixed-initiative tasks, detecting and being responsive to human cognitive states, in particular systematic cognitive states, is among the most critical capabilities for artificial systems to ensure smooth interactions with humans and high overall team performance. Various human physiological parameters, such as heart rate, respiration rate, blood pressure, and skin conductance, as well as brain activity inferred from functional near-infrared spectroscopy or electroencephalogram, have been linked to different systemic cognitive states, such as workload, distraction, or mind-wandering among others. Whether these multimodal signals are indeed sufficient to isolate such cognitive states across individuals performing tasks or whether additional contextual information (e.

View Article and Find Full Text PDF

Robots interacting with humans in assistive contexts have to be sensitive to human cognitive states to be able to provide help when it is needed and not overburden the human when the human is busy. Yet, it is currently still unclear which sensing modality might allow robots to derive the best evidence of human workload. In this work, we analyzed and modeled data from a multi-modal simulated driving study specifically designed to evaluate different levels of cognitive workload induced by various secondary tasks such as dialogue interactions and braking events in addition to the primary driving task.

View Article and Find Full Text PDF

We introduce a novel approach for robust estimation of physiological parameters such as interbeat interval (IBI) and heart rate variability (HRV) from cardiac signals captured with wearable sensors in the presence of motion artifacts. Motion artifact due to physical exercise is known as a major source of noise that contributes to a significant decline in the performance of IBI and HRV estimation techniques for cardiac monitoring in free-living environments. Therefore, developing robust estimation algorithms is essential for utilization of wearable sensors in daily life situations.

View Article and Find Full Text PDF