Publications by authors named "Ayano Hiroshima"

The nuclear receptors Liver X receptors, LXRα and LXRβ, regulate cholesterol and triglyceride metabolism. We and others have previously reported that synthetic LXR agonists reduced atherosclerosis in models of mouse with no detectable plasma cholesteryl ester transfer protein (CETP) activity, which plays an important role in reverse cholesterol transport. In the present study, we investigated the effect of LXR activation in rabbits to elucidate the influence of CETP activity.

View Article and Find Full Text PDF

Liver X receptors (LXRs), LXRalpha and LXRbeta, are members of the nuclear receptor superfamily and regulate the expression of genes involved in the regulation of cholesterol and fatty acid metabolism. Human plasma, unlike mouse plasma, contains cholesteryl ester transfer protein (CETP), which plays an important role in reverse cholesterol transport (RCT). LXRs induce CETP transcription via a direct repeat 4 element in the CETP promoter.

View Article and Find Full Text PDF

We found that overexpression of Bop3, a protein of unknown function, confers resistance to methylmercury in Saccharomyces cerevisiae. Bmh2, Fkh1, and Rts1 are proteins that have been previously shown to bind Bop3 by the two-hybrid method. Overexpression of Bmh2 and the homologous protein Bmh1 confers resistance to methylmercury in yeast, but overexpression of either Fkh1 or Rts1 has a minimal effect.

View Article and Find Full Text PDF

Exposure of blood to tissue factor (TF) rapidly initiates the coagulation serine protease cascades. TF is expressed by macrophages and other types of cell within atherosclerotic lesions and plays an important role in thrombus formation after plaque rupture. Macrophage TF expression is induced by pro-inflammatory stimuli including lipopolysaccharide (LPS), interleukin-1beta and tumor necrosis factor-alpha.

View Article and Find Full Text PDF

Liver X receptors (LXR alpha and LXR beta) are nuclear receptors, which are important regulators of cholesterol and lipid metabolism. LXRs control genes involved in cholesterol efflux in macrophages, bile acid synthesis in liver and intestinal cholesterol absorption. LXRs also regulate genes participating in lipogenesis.

View Article and Find Full Text PDF