Background: COVID-19 survivors around the globe are suffering from mental health issues. While mental health problems can be an early warning sign of dementia, they may also increase the chances of developing the disease. In this study, we examined the mental health of COVID-19 survivors and mapped its associations with cognitive and demographic variables.
View Article and Find Full Text PDFHealth data are often not symmetric to be adequately modeled through the usual normal distributions; most of them exhibit skewed patterns. They can indeed be modeled better through the larger family of skew-normal distributions covering both skewed and symmetric cases. Since outliers are not uncommon in complex real-life experimental datasets, a robust methodology automatically taking care of the noises in the data would be of great practical value to produce stable and more precise research insights leading to better policy formulation.
View Article and Find Full Text PDFRandomly censored survival data are frequently encountered in biomedical or reliability applications and clinical trial analyses. Testing the significance of statistical hypotheses is crucial in such analyses to get conclusive inference but the existing likelihood-based tests, under a fully parametric model, are extremely nonrobust against outliers in the data. Although there exists a few robust estimators given randomly censored data, there is hardly any robust testing procedure available in the literature in this context.
View Article and Find Full Text PDFThe density power divergence, indexed by a single tuning parameter , has proved to be a very useful tool in minimum distance inference. The family of density power divergences provides a generalized estimation scheme which includes likelihood-based procedures (represented by choice for the tuning parameter) as a special case. However, under data contamination, this scheme provides several more stable choices for model fitting and analysis (provided by positive values for the tuning parameter ).
View Article and Find Full Text PDFCox proportional hazard regression model is a popular tool to analyze the relationship between a censored lifetime variable with other relevant factors. The semiparametric Cox model is widely used to study different types of data arising from applied disciplines such as medical science, biology, and reliability studies. A fully parametric version of the Cox regression model, if properly specified, can yield more efficient parameter estimates, leading to better insight generation.
View Article and Find Full Text PDFParametric hypothesis testing associated with two independent samples arises frequently in several applications in biology, medical sciences, epidemiology, reliability and many more. In this paper, we propose robust Wald-type tests for testing such two sample problems using the minimum density power divergence estimators of the underlying parameters. In particular, we consider the simple two-sample hypothesis concerning the full parametric homogeneity as well as the general two-sample (composite) hypotheses involving some nuisance parameters.
View Article and Find Full Text PDFEntropy and relative entropy measures play a crucial role in mathematical information theory. The relative entropies are also widely used in statistics under the name of divergence measures which link these two fields of science through the minimum divergence principle. Divergence measures are popular among statisticians as many of the corresponding minimum divergence methods lead to robust inference in the presence of outliers in the observed data; examples include the ϕ -divergence, the density power divergence, the logarithmic density power divergence and the recently developed family of logarithmic super divergence (LSD).
View Article and Find Full Text PDF