Publications by authors named "Ayane Nakano"

Bromobenzene is an industrial solvent that elicits toxicity predominantly in the liver. In this study, the hepatic concentrations of bromobenzene and its related compounds 1,2-dibromobenzene and 1,4-dibromobenzene in humanized-liver mice were predicted after single oral administrations by simplified physiologically based pharmacokinetic (PBPK) models that had been set up on experimental plasma concentrations after single oral doses of 100 mg/kg to rats and 100-250 mg/kg to control mice and humanized-liver mice. The output values by simplified PBPK models were consistent with measured blood substrate concentrations in rats, control mice, and humanized-liver mice with suitable input parameter values derived from in silico prediction and the literature or estimated by fitting the measured plasma substrate concentrations.

View Article and Find Full Text PDF

Recently developed high-throughput in vitro assays in combination with computational models could provide alternatives to animal testing. The purpose of the present study was to model the plasma, hepatic, and renal pharmacokinetics of approximately 150 structurally varied types of drugs, food components, and industrial chemicals after virtual external oral dosing in rats and to determine the relationship between the simulated internal concentrations in tissue/plasma and their lowest-observed-effect levels. The model parameters were based on rat plasma data from the literature and empirically determined pharmacokinetics measured after oral administrations to rats carried out to evaluate hepatotoxic or nephrotic potentials.

View Article and Find Full Text PDF

Atomoxetine is an approved medicine for attention-deficit/hyperactivity disorder and a cytochrome P450 2D6 (CYP2D6) probe substrate. Simple physiologically based pharmacokinetic (PBPK) models and compartment models were set up to account for drug monitoring results of 33 Japanese patients (6-15 years of age) to help establish the correct dosage for the evaluation of clinical outcomes. The steady-state one-point drug monitoring data for the most participants indicated the extensive biotransformation of atomoxetine to 4-hydroxyatomoxetine under individually prescribed doses of atomoxetine.

View Article and Find Full Text PDF