Org Biomol Chem
January 2025
In spite of being the second-lowest abundant proteinogenic amino acid, approximately 90% of proteins contain at least one tryptophan residue. Hence, the chemoselective functionalization of tryptophan residue can provide access to site-selective bioconjugation of almost all known proteins. With the increase in the utility of bioconjugated proteins and peptides as drugs and therapeutic agents, the development of smart protocols to fabricate and modulate biomolecules has flourished.
View Article and Find Full Text PDFWith the versatile utility of bio-conjugated peptides and proteins in the fields of agriculture, food, cosmetics and pharmaceutical industry, the design of smart protocols to conjugate and modulate biomolecules becomes highly desirable. During this process, the most important consideration for biochemists is the retention of configurational integrity of the biomolecules. Moreover, this type of bioconjugation of peptide and protein becomes frivolous if the reaction is not performed with precise amino acid residues.
View Article and Find Full Text PDFSelective chemical reactions at precise amino acid residues of peptides and proteins have become an exploding field of research in the last few decades. With the emerging utility of bioconjugated peptides and proteins as drug leads and therapeutic agents, the design of smart protocols to modulate and conjugate biomolecules has become necessary. During this modification, the most important concern of biochemists is to keep intact the structural integrity of the biomolecules.
View Article and Find Full Text PDFThe V-band frequencies are becoming popular due to their application potential towards secure high data rate communications. This article reports bandwidth enhancement of an 11-cavity V-band Klystron amplifier employing staggered tuning. A systematic approach is presented to stagger-tune the periodically allocated multiple cavities of the Klystron operating at 60.
View Article and Find Full Text PDF