Publications by authors named "Ayala Tovy"

Article Synopsis
  • This text indicates a correction to a previously published article.
  • The specific article is identified by its DOI: 10.1016/j.isci.2024.109122.
  • The correction ensures that the information or data presented in the article is accurate and up to date.
View Article and Find Full Text PDF
Article Synopsis
  • The DNA damage response is crucial for keeping our genes intact, and its disruption is often linked to cancer development, with PPM1D acting as a key negative regulator.
  • Researchers used CRISPR/Cas9 to find vulnerabilities in cancer cells with mutations in PPM1D, identifying superoxide dismutase-1 (SOD1) as a promising target.
  • The study showed that PPM1D-mutant cells have high levels of reactive oxygen species and struggle with oxidative stress, suggesting that targeting SOD1 could be a new treatment approach for these types of cancers.
View Article and Find Full Text PDF
Article Synopsis
  • Aging leads to a dominance of specific variants of hematopoietic stem cells (HSCs) in blood cell production, which may negatively impact health due to their differentiated progeny.* -
  • Somatic mutations in the DNMT3A gene are linked to this clonal dominance, and interactions with high-fat diets (HFD) were studied in mice to understand their combined effects.* -
  • The research found that reduced DNMT3A in the context of HFD promotes weight gain and inflammation by triggering pro-inflammatory pathways and abnormal DNA methylation during the differentiation of myeloid cells.*
View Article and Find Full Text PDF
Article Synopsis
  • Somatic mutations accumulate in cells as they age, leading to clonal expansion, especially in hematopoietic cells, where certain gene mutations increase the likelihood of clonal hematopoiesis (CH).
  • The study focuses on SRCAP mutations in hematopoietic stem cells, which enhance their survival and proliferation, particularly after chemotherapy treatment with doxorubicin.
  • SRCAP is linked to DNA repair and chromatin remodeling, and its mutations promote a specific expansion of lymphoid cells by altering how DNA is repaired and how certain histones are regulated.
View Article and Find Full Text PDF
Article Synopsis
  • The DNA damage response is crucial for keeping our genetic material stable and its disruption is often linked to cancer development.
  • PPM1D acts as a key negative regulator of this response, and mutations in this gene have been found in various cancers, making it a potential target for new treatments.
  • Using CRISPR/Cas9 screening, researchers identified SOD1 as a promising target for cells with PPM1D mutations, showing that these cells have higher levels of reactive oxygen species and struggle with oxidative stress, indicating a new cancer therapy approach.
View Article and Find Full Text PDF

Upon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

DNA Methyltransferase 3 A (DNMT3A) is an important facilitator of differentiation of both embryonic and hematopoietic stem cells. Heterozygous germline mutations in lead to Tatton-Brown-Rahman Syndrome (TBRS), characterized by obesity and excessive height. While DNMT3A is known to impact feeding behavior via the hypothalamus, here we investigated a role in adipocyte progenitors utilizing heterozygous knockout mice that recapitulate cardinal TBRS phenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • DNMT3A is an important protein that helps develop mammals, and there are two types: DNMT3A1 (long) and DNMT3A2 (short).
  • Researchers found that DNMT3A1 is essential for normal mouse development after birth, while DNMT3A2 does not have this role.
  • DNMT3A1 works in the brain by controlling specific genes, and its special part (the N terminus) is needed for it to perform properly and attach to areas of DNA that it regulates.
View Article and Find Full Text PDF

Clonal hematopoiesis is a prevalent age-related condition associated with a greatly increased risk of hematologic disease; mutations in DNA methyltransferase 3A () are the most common driver of this state. variants occur across the gene with some particularly associated with malignancy, but the functional relevance and mechanisms of pathogenesis of the majority of mutations are unknown. Here, we systematically investigated the methyltransferase activity and protein stability of 253 disease-associated mutations, and found that 74% were loss-of-function mutations.

View Article and Find Full Text PDF

Tatton-Brown-Rahman syndrome (TBRS) is an overgrowth disorder caused by germline heterozygous mutations in the DNA methyltransferase DNMT3A. DNMT3A is a critical regulator of hematopoietic stem cell (HSC) differentiation and somatic DNMT3A mutations are frequent in hematologic malignancies and clonal hematopoiesis. Yet, the impact of constitutive DNMT3A mutation on hematopoiesis in TBRS is undefined.

View Article and Find Full Text PDF

DNA methyltransferase 3A (DNMT3A) is the most commonly mutated gene in clonal hematopoiesis (CH). Somatic DNMT3A mutations arise in hematopoietic stem cells (HSCs) many years before malignancies develop, but difficulties in comparing their impact before malignancy with wild-type cells have limited the understanding of their contributions to transformation. To circumvent this limitation, we derived normal and DNMT3A mutant lymphoblastoid cell lines from a germline mosaic individual in whom these cells co-existed for nearly 6 decades.

View Article and Find Full Text PDF

Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn/Mg-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure.

View Article and Find Full Text PDF

DNA methylation is a key regulator of embryonic stem cell (ESC) biology, dynamically changing between naïve, primed, and differentiated states. The p53 tumor suppressor is a pivotal guardian of genomic stability, but its contributions to epigenetic regulation and stem cell biology are less explored. We report that, in naïve mouse ESCs (mESCs), p53 restricts the expression of the de novo DNA methyltransferases Dnmt3a and Dnmt3b while up-regulating Tet1 and Tet2, which promote DNA demethylation.

View Article and Find Full Text PDF

Nitric oxide (NO) has antimicrobial properties against many pathogens due to its reactivity as an S-nitrosylating agent. It inhibits many of the key enzymes that are involved in the metabolism and virulence of the parasite Entamoeba histolytica through S-nitrosylation of essential cysteine residues. Very little information is available on the mechanism of resistance to NO by pathogens in general and by this parasite in particular.

View Article and Find Full Text PDF

Adaptation to environmental stress is a key process that allows the unicellular parasite Entamoeba histolytica to survive in its human host. We previously characterized EhMLBP as an essential protein for the growth and the virulence of the parasite. EhMLBP binds to methylated repetitive DNA, and is one of the core proteins of the parasite's epigenetic machinery.

View Article and Find Full Text PDF

The unicellular parasite, Entamoeba histolytica, is exposed to numerous adverse conditions, such as nutrient deprivation, during its life cycle stages in the human host. In the present study, we examined whether the parasite virulence could be influenced by glucose starvation (GS). The migratory behaviour of the parasite and its capability to kill mammalian cells and to lyse erythrocytes is strongly enhanced following GS.

View Article and Find Full Text PDF

Entamoeba histolytica enolase (EhENO) reversibly interconverts 2-phosphoglyceric acid (2-PGA) and phosphoenolpyruvic acid (PEP). The crystal structure of the homodimeric EhENO is presented at a resolution of 1.9 Å.

View Article and Find Full Text PDF

Amoebiasis is a serious infectious disease that is caused by the unicellular parasite, Entamoeba histolytica. This parasite is mainly found in developing countries, and are named owing to its ability to destroy tissues. The molecular mechanisms that regulate the virulence of this parasite are not well understood.

View Article and Find Full Text PDF

Protozoan parasites are among the most devastating infectious agents of humans responsible for a variety of diseases including amebiasis, which is one of the three most common causes of death from parasitic disease. The agent of amebiasis is the amoeba parasite Entamoeba histolytica that exists under two stages: the infective cyst found in food or water and the invasive trophozoite living in the intestine. The clinical manifestations of amebiasis range from being asymptomatic to colitis, dysentery or liver abscesses.

View Article and Find Full Text PDF

Cytosine-5 methyltransferases of the Dnmt2 family function as DNA and tRNA methyltransferases. Insight into the role and biological significance of Dnmt2 is greatly hampered by a lack of knowledge about its protein interactions. In this report, we address the subject of protein interaction by identifying enolase through a yeast two-hybrid screen as a Dnmt2-binding protein.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9lpvsifem4p7a5er821q9rbqmnv3lier): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once