Publications by authors named "Ayako Tasaki"

Background: Elevated creatinine concentrations often indicate acute renal injury and renal biopsies are considered in this situation. However,pseudohypercreatininemia is potential cause of elevated creatinine concentrations, and invasive interventions should be avoided.

Case Presentation: A 54-year-old woman underwent surgery for descending aortic dissection.

View Article and Find Full Text PDF

Background: Pathological destruction of blood-brain barrier (BBB) has been thought to be the initial key event in the process of developing multiple sclerosis (MS). The purpose of the present study was to clarify the possible molecular mechanisms responsible for the malfunction of BBB by sera from relapse-remitting MS (RRMS) and secondary progressive MS (SPMS) patients.

Methods: We evaluated the effects of sera from the patients in the relapse phase of RRMS (RRMS-R), stable phase of RRMS (RRMS-S) and SPMS on the expression of tight junction proteins and vascular cell adhesion protein-1 (VCAM-1), and on the transendothelial electrical resistance (TEER) in human brain microvascular endothelial cells (BMECs).

View Article and Find Full Text PDF

Objective: Pathological breakdown of the blood-brain barrier (BBB) is thought to constitute the beginning of the disease process in neuromyelitis optica (NMO). In the current study, we investigated possible molecular mechanisms responsible for the breakdown of BBB using NMO sera.

Methods: We analysed the effects of sera obtained from anti-aquaporin 4 (AQP4) antibody-positive NMO spectrum disorder (NMOSD) patients, multiple sclerosis (MS) patients and control subjects on the production of claudin-5, matrix-metalloproteinases (MMPs)-2/9, and vascular cell adhesion protein-1 (VCAM-1) in human brain microvascular endothelial cells (BMECs).

View Article and Find Full Text PDF

Objective: In multifocal motor neuropathy (MMN), the destruction of the blood-nerve barrier (BNB) has been considered to be the key step in the disease process. The purpose of the present study was to ascertain whether sera from patients with MMN can open the BNB, and which component of patient sera is the most important for this disruption.

Methods: We evaluated the effects of sera from patients with MMN, patients with amyotrophic lateral sclerosis, and control subjects on the expression of tight junction proteins and vascular cell adhesion molecule-1 (VCAM-1), and on the transendothelial electrical resistance (TEER) in human peripheral nerve microvascular endothelial cells (PnMECs).

View Article and Find Full Text PDF

Autoantibodies against astrocyte water channel aquaporin-4 (AQP4) are highly specific for neuromyelitis optica (NMO). However, the molecular mechanism of NMO still remains unclear. The purpose of this study was to identify the possible humoral mechanisms responsible for the occurrence of astrocytic damage.

View Article and Find Full Text PDF

Objective: To ascertain the hypothesis that the phenotypic differences between Bickerstaff's brainstem encephalitis (BBE) and Miller Fisher syndrome (MFS) are derived from the differences in the effects of sera on blood-brain barrier (BBB) and blood-nerve barrier.

Background: Antibodies against GQ1b are frequently detected in BBE and MFS, and these two disorders may share the same pathogenesis, but the clinical phenotypes of BBE and MFS are substantially different.

Methods: The effects of sera obtained from BBE patients, MFS patients and control subjects were evaluated with regard to the expression of tight junction proteins and transendothelial electrical resistance in human brain microvascular endothelial cells (BMECs) and human peripheral nerve microvascular endothelial cells.

View Article and Find Full Text PDF

The blood-nerve barrier (BNB) is a highly specialized unit that maintains the microenvironments of the peripheral nervous system. Since the breakdown of the BNB has been considered a key step in autoimmune neuropathies such as Guillain-Barré syndrome and chronic inflammatory demyelinating polyraduculoneuropathy, it is important to understand the cellular properties of the peripheral nerve microvascular endothelial cells (PnMECs) which constitute the BNB. For this purpose, we established an immortalized cell line derived from human PnMECs.

View Article and Find Full Text PDF