Publications by authors named "Ayako Ooishi"

Protein denaturation is a ubiquitous process that occurs both and . While our molecular understanding of the denatured structures of proteins is limited, it is commonly accepted that the loss of unique intramolecular contacts makes proteins larger. Herein, we report compaction of the immunoglobulin G1 (IgG1) protein upon acid denaturation.

View Article and Find Full Text PDF

Aggregation of protein therapeutics can lead to immunogenicity and loss of function in vivo. Its effective prevention requires an understanding of the conformational and colloidal stability of protein and the improvement of both. Granulocyte colony-stimulating factor (G-CSF), which is one of the most widely used protein therapeutics, was previously shown to be conformationally stabilized by connecting its N- and C-termini with amide bonds (backbone circularization).

View Article and Find Full Text PDF

Protein-protein interactions that can be controlled by environmental triggers have immense potential in various biological and industrial applications. In the current study, we aimed to engineer a pH-dependent protein-protein interaction that employs intramolecular electrostatic repulsion through a structure-guided histidine substitution approach. We implemented this strategy on protein G, an affinity ligand for immunoglobulin G, and showed that even a single point mutation effectively improved the pH sensitivity of the binding interactions without adversely affecting its structural stability or its innate binding function.

View Article and Find Full Text PDF

Background: In antibody purification processes, the acidic buffer commonly used to elute the bound antibodies during conventional affinity chromatograph, can damage the antibody. Herein we describe the development of several types of affinity ligands which enable the purification of antibodies under much milder conditions.

Results: Staphylococcal protein A variants were engineered by using both structure-based design and combinatorial screening methods.

View Article and Find Full Text PDF

Optimizing antibody purification is crucial to overcoming a bottleneck in the costly manufacturing process for antibody therapy. To address this issue, we designed a pH-sensitive Staphylococcus aureus protein A variant that retained its innate stability and affinity toward antibody. On the basis of structural information and mutation analysis data, we identified candidate positions for accumulative histidine substitutions to cause electrostatic repulsion under acidic conditions.

View Article and Find Full Text PDF

A simple systematic approach using Fourier transform infrared (FTIR) spectroscopy, size exclusion chromatography (SEC) and design of experiments (DOE) techniques was applied to the analysis of aggregation factors for protein formulations in stress and accelerated testings. FTIR and SEC were used to evaluate protein conformational and storage stabilities, respectively. DOE was used to determine the suitable formulation and to analyze both the main effect of single factors and the interaction effect of combined factors on aggregation.

View Article and Find Full Text PDF

Relationships between growth conditions and thermostability were examined for photosynthetic inner membranes (chromatophores) from Rhodopseudomonas viridis and Rhodospirillum rubrum of which morphology, lipid composition, and protein/lipid rate are rather mutually different. Signals observed by differential scanning calorimetry of the chromatophores were correlated with thermal state transitions of the membrane components by reference to temperature dependencies of circular dichroism and absorption spectra of the purified supramolecule comprising a photoreaction center and surrounding light-harvesting pigment-protein complexes that are the prominent proteins in both membranes. The differential scanning calorimetry curves of those chromatophores exhibited different dependencies on growth stages and environmental temperatures.

View Article and Find Full Text PDF

Protein-protein interaction in response to environmental conditions enables sophisticated biological and biotechnological processes. Aiming toward the rational design of a pH-sensitive protein-protein interaction, we engineered pH-sensitive mutants of streptococcal protein G B1, a binder to the IgG constant region. We systematically introduced histidine residues into the binding interface to cause electrostatic repulsion on the basis of a rigid body model.

View Article and Find Full Text PDF

What is the smallest protein? This is actually not such a simple question to answer, because there is no established consensus among scientists as to the definition of a protein. We describe here a designed molecule consisting of only 10 amino acids. Despite its small size, its essential characteristics, revealed by its crystal structure, solution structure, thermal stability, free energy surface, and folding pathway network, are consistent with the properties of natural proteins.

View Article and Find Full Text PDF