Background: Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture.
View Article and Find Full Text PDFIn building artificial intelligence (AI) agents, referring to how brains function in real environments can accelerate development by reducing the design space. In this study, we propose a probabilistic generative model (PGM) for navigation in uncertain environments by integrating the neuroscientific knowledge of hippocampal formation (HF) and the engineering knowledge in robotics and AI, namely, simultaneous localization and mapping (SLAM). We follow the approach of brain reference architecture (BRA) (Yamakawa, 2021) to compose the PGM and outline how to verify the model.
View Article and Find Full Text PDFPath integration is one of the functions that support the self-localization ability of animals. Path integration outputs position information after an animal's movement when initial-position and movement information is input. The core region responsible for this function has been identified as the medial entorhinal cortex (MEC), which is part of the hippocampal formation that constitutes the limbic system.
View Article and Find Full Text PDF